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ABSTRACT 
 
Hierarchical Age-Period-Cohort (HAPC) Cross-Classified Fixed Effects Models (CCFEM) and Random 
Effects Models (CCREM) have been increasingly used by social scientists to investigate temporal 
variation in numerous outcomes across ages, time periods, and birth cohorts. The models have received 
recent scrutiny and testing, with some researchers cautioning that HAPC models estimate (1) biased and 
(2) inconsistent age, period, and cohort effects. These previous findings, however, were based on a 
misrepresentation of the HAPC modeling framework and were derived from exercises that applied HAPC 
models to unrealistic simulated data. In this article we discuss the scope and application of HAPC models 
and test the validity and consistency of HAPC estimates of age-, period-, and cohort-based variation in 
outcomes using simulated data. We replicate previous findings and show that that existing criticisms of 
HAPCs apply to rare, select circumstances, with the previous poor performance of HAPC models 
stemming from (1) misapplication of the models on (2) unrealistic simulated data. Findings from 
simulated data in this paper show that fitted HAPC-CCREMs and HAPC-CCFEMs estimate the “true” 
age, period, and cohort effects in simulated data when applied to (1) Age-Period-Cohort data structures in 
which cohort membership is not a function of one’s age and period, or (2) data in which the functional 
forms of age effects, period effects, and cohort effects on the outcome are not assumed to be linear. 
Further, we show that distributions of the age, period, and cohort effects estimated from Markov chain 
Monte Carlo simulations using Gibbs sampling for the HAPC-CCREM are also consistent with “true” 
effects in both individual-level data and aggregate rate data.      
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Our paper will proceed across several analytical steps. 
 
Step 1: We replicate the data, methods, and findings from a paper “The Cross-Classified Age-Period-
Cohort Model as a Constrained Estimator” presented at 2013 PAA Annual Meeting Session 24, 
Innovative Theory and Methods for Demographic Research, by Liying Luo and James Hodges. The 
authors concluded that the HAPC fitted to three simulated datasets produced biased and inconsistent 
results. We show that these authors made two critical errors in their analytic design: (1) the “true” age, 
period, and cohort effects selected by the authors create data that bury temporal variation by assuming a 
linear functional form for all three temporal dimensions. As such, these authors applied HAPC models to 
data that did not exhibit any temporal-based variation, thereby assuring the models’ failures to detect any 
period or cohort effects. This is shown in Table1 (the “true” effects from three simulated datasets created 
by the authors), Table 2 (the observed age-specific outcomes across time periods as functions of the 
“true” effects), and Figure 1 (graphical plots of the observed outcomes) below. 
 

 

 

Figure 1. “True” Observed Outcomes from the Combined “True” Age, Period, and Cohort Effects. 

 

Dataset 1 Observations exhibit variation in Age and Period, and Cohort (i.e., Age-specific outcomes vary 
across Period). 
Dataset 2 Observations exhibit variation in Age and Period only (i.e., parallel Age effects). 
Dataset 3 Observations exhibit variation in Age only (i.e., Age effects are uniform across time). 
 
As seen in Figure 1, only in Dataset NO. 1 do all three temporal dimensions exhibit some variation in the 
outcome. The age-specific outcomes in Dataset NO. 2 vary across period in a uniform/parallel manner, 
and thus only exhibit period-based temporal variation. No cohort variation is detectable. Finally, the age-
specific outcomes in Dataset NO. 3 are exactly the same across time periods and birth cohorts. Thus, in 

Table 1. Replication of Luo's "True" Age, Period, and Cohort Effects.
Dataset

α1 α2 α3 β1 β2 β3 γ1 γ2 γ3 γ4 γ5

NO. 1 -1 0 1 -1 0 1 -1.5 -1.5 0 0 1.5
NO. 2 -1 0 1 -1 0 1 -3 -1.5 0 1.5 3
NO. 3 -1 0 1 -1 0 1 2 1 0 -1 -2

Age Period Cohort

Table 2. "True" Observed Outcomes from the Combined "True" Age, Period, and Cohort Effects.

Dataset
β1 β2 β3 β1 β2 β3 β1 β2 β3

α1 -2 -1 1.5 -2 -1 1.5 -2 -2 -2
α2 -2.5 0 1 -2.5 0 1 0 0 0
α3 -1.5 -0.5 2 -1.5 -0.5 2 2 2 2

NO. 1 NO. 2 NO. 3
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this case there is neither cohort variation nor period variation in the outcome. Had Luo and Hodges 
estimated model fit statistics for Datasets NO. 2 & 3 they would have seen that an age-period model (in 
the case of Dataset No. 2) or an age-only model (in the case of Dataset NO. 3) would have been preferred 
to an APC model. Indeed, the need to perform model fit tests before applying APC models is a point 
stressed by multiple APC researchers (Yang and Land 2013).  
 
The second critical error committed by Luo and Hodges was to frame the application of HAPC-CCREMs 
as only occurring to data from tabular rates of age-specific data across time periods, wherein cohort is 
produced as a direct relationship from period-age = cohort. Data of this structure suffer the identification 
problem in which the values of age, period, and cohort are absolutely dependent on each other. However, 
the authors did not highlight the fact that multiple real-life applications of the HAPC-CCREM modeling 
framework have been applied to individual-level data wherein respondents self-report their year of birth 
(such as the National Health Interview Survey) or other data structures in which the year of respondents’ 
births are known (such as knowing the birth year of mothers in the National Vital Statistics Birth Data). In 
these cases, cohort groupings can be created from the self-reported year of birth rather than being a direct 
linear outcome from period-age in tabular data.  
 
In short, multiple instances show that the HAPC-CCREM have been applied to data structures that do not 
reflect the C=P-A identification problem, yet Luo and Hodges present the HAPC-CCREM as performing 
well only under the circumstances in which a researcher must constrain the effects of neighboring cohorts 
to be equal. This is not the case. 
 
Taken together, we show that Luo and Hodges misrepresent the application of HAPC-CCREMs and 
misapply the models themselves to data that should not be analyzed with an APC framework.  
 
Step 2: We next discuss the assumptions behind the linear dependency of C = P-A, and the appropriate 
application of HAPC models.  
 
Here, for example, is the classic C = P-A identification problem stemming from tabulated Age-specific 
outcome across Periods. In these data we do not know Cohort, so we must assign it as a linear function of 
Period-Age: 
 

 
 
Age, Period, and Cohort obtained from individual-level data in which survey respondents self-report their 
birth year, however, do not suffer from the linear dependency behind the identification problem. 
 

Linear Assumption / Tabular Data Example of Tabular Data
β1 β2 β3 1990 1991 1992

α3 γ1 γ2 γ3 52 1938 1939 1940
α2 γ2 γ3 γ4 51 1939 1940 1941
α1 γ3 γ4 γ5 50 1940 1941 1942

Assumes five C = P-A



 
 
Just as in a classic Lexis diagram, every person experiences a calendar year at two different ages. Thus, 
when birth cohort is self-reported in individual-level data we can observe respondents from a given cohort 
at one age across two periods. In the design above, for instance, persons in birth cohort γ2 experience age 
α2 during the time periods β1 and β2. When we have individual-level information on birth year the APC 
data can be scaled up, such that, for example, we can set αi, βj, and γk to all be five years wide, 10 years 
wide, or to be various widths. To illustrate, here are actual data from the National Health Interview 
Survey, waves 1986-2004, linked to mortality records at the National Death Index through December 31, 
2006.  Because we have survey respondents’ self-reports of age, birth year, and enumerator-reported 
survey year, we can freely create Age, Period, and Cohort groupings that need not be direct, linear 
functions of one another. In the case below we observe five year cohorts age across five year periods in 
terms of five year age intervals. 
 
Age-Period-Cohort Design from Individual-level Data in the National-Health Interview Survey, 1990-
2005. 

 
 
The lesson as it applies to the current exercises is this: the design of the APC data depends on our 
assumptions about the source. Are the data individual-level (or contain some other way by which we 
know birth year such that cohorts do not need to be linearly produced from period-age), or are they 
tabulated rate data that suffer from the linear dependency of period-age=cohort? Luo’s and Hodges’s 
paper and presentation assumed only the latter.  
 

Table. 3. Age, Period, and Cohort from Individual-level Data

α3 γ0 γ1 γ1 γ2 γ2 γ3
γ0 γ1 γ1 γ2 γ2 γ3

α2 γ1 γ2 γ2 γ3 γ3 γ4
γ1 γ2 γ2 γ3 γ3 γ4

α1 γ2 γ3 γ3 γ4 γ4 γ5
γ2 γ3 γ3 γ4 γ4 γ5

Uses Individual-level Self-reported Birth Year to Create C ≠ P-A

β1 β2 β3

5yr X 5yr X 5yr Age-Period-Cohort Design for 50-65 year Old Age Groups in the 1990-2005 National Health Interview Survey.

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
Cohort 1, [1925-1930) 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
1929 Cohort 2, [1930-1935) 1935 1936 1937 1938 1939 1940 1941 1942 1943
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
1931 1932 1933 1934 Cohort 3, [1935-1940) 1940 1941 1942 1943 1944 1945

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
1933 1934 1935 1936 1937 1938 1939 Cohort 4, [1940-1945) 1945 1946 1947
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

1936 1937 1938 1939 1940 1941 1942 1943 1944 Cohort 5, [1945-1950) 1950
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 Cohort 6, [1950-1955)
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

Period 2, [1990-1995) Period 3, [1995-2000) Period 4, [2000-2005)

Age 3, [60-65)

Age 2, [55-60)

Age 1, [50-55)



 
 

 
Step 3: We next introduce two different data designs that each addresses the two separate errors in Luo’s 
and Hodges exercises: (1) introduce data as though it were obtained at the individual-level, and thus has a 
sixth cohort, with two cohorts for every age x period cell; and (2) assume non-linear functional form of 
cohort’s effect on Y. 
 
Here, we introduce a sixth cohort to the original three datasets, assuming the data to be individual-level 
and, thus, following the structure depicted in Table 3. 
 

 
 
Next, we then create three alternative datasets from Luo’s and Hodges’s original data sets that assume 
non-linear effects of cohort on Y: 
 

Example of Individual-level Data

52 1937 1938 1938 1939 1939 1940
1937 1938 1938 1939 1939 1940

51 1938 1939 1939 1940 1940 1941
1938 1939 1939 1940 1940 1941

50 1939 1940 1940 1941 1941 1942
1939 1940 1940 1941 1941 1942

Uses Individual-level Self-reported Birth Year to Create C ≠ P-A

Example of Individual-level Data Assuming Linear Dependence

52 1938 1938 1939 1939 1940 1940
1938 1938 1939 1939 1940 1940

51 1939 1939 1940 1940 1941 1941
1939 1939 1940 1940 1941 1941

50 1940 1940 1941 1941 1942 1942
1940 1940 1941 1941 1942 1942

Uses Age at time Period to Assign Cohort

1990 1991 1992

1990 1991 1992

Table 4. "True" Age, Period, and Cohort Effects from Individual-level Data
Dataset

α1 α2 α3 β1 β2 β3 γ1 γ2 γ3 γ4 γ5 γ6

NO. 1 -1 0 1 -1 0 1 -1.5 -1.5 0 0 1.5 2
NO. 2 -1 0 1 -1 0 1 -3 -1.5 0 1.5 3 *4.5
NO. 3 -1 0 1 -1 0 1 2 1 0 -1 -2 *-3

* Continue to assume linear functional form

Age Period Cohort



 
 
Figure 2. “True” Cohort Effects, Original Data from Table 2 and Non-linear Data from Table 5. 

  
 
Figure 3. “True” Observed Outcomes from the Combined “True” Age, Period, and Cohort Effects in 
Table 5. 

 
Dataset 1 Observations exhibit variation in Age and Period, and Cohort (i.e., Age varies across Period). 
Dataset 2 Observations exhibit variation in Age and Period, and Cohort (i.e., Age varies across Period). 
Dataset 3 Observations exhibit variation in Age and Period, and Cohort (i.e., Age varies across Period). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. "True" Age, Period, and Cohort Effects in Data with Non-linear Functional Form for Cohort
Dataset

α1 α2 α3 β1 β2 β3 γ1 γ2 γ3 γ4 γ5

NO. 1' -1 0 1 -1 0 1 -1.5 -1.5 0 0 *1.5
NO. 2' -1 0 1 -1 0 1 -3 -0.5 0 0.5 3
NO. 3' -1 0 1 -1 0 1 1 0.9 0.25 -0.25 -0.1

* Dataset NO. 1 already assumed a non-linear functional form of cohort, so no changes were made
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Step 4 – Fit HAPC-CCFEM and HAPC-CCREM on data from Table 2 to Replicate Luo’s & Hodges’s 
findings: 
 

 
Note: CCFEM and CCREM models in Dataset NO.1 constrained Cohort 1=2 and Cohort 3=4. 
 
These results are the same as those presented by Luo and Hodges. They show the inability of the HAPC-
CCFEM and HAPC-CCREM to estimate the “true” APC effects from Table 1.  
 
Step 5: Refit HAPC-CCFEM and HAPC-CCREM on data from Table 4: individual-level data containing 
3 Age, 3 Period, and 6 Cohort Effects. 
 

 
 

Table 6. Simulation Results: CCFEM and CCREM estimates for the three datasets in Table 1.

Assigned CCFEM CCREM Assigned CCFEM CCREM Assigned CCFEM CCREM
1 -1 -1.00 -1.00 -1 0.47 0.48 -1 -2.03 -2.02

Age 2 0 -0.01 -0.01 0 -0.01 0.01 0 -0.01 0.01
3 1 1.01 1.01 1 -0.45 -0.48 1 2.05 2.02
1 -1 -0.97 -0.99 -1 -2.44 -2.48 -1 0.06 0.00

Period 2 0 0.00 -0.02 0 0.00 -0.01 0 0.00 0.00
3 1 1.03 1.01 1 2.50 2.50 1 0.00 0.00
1 -1.5 -1.49 -1.47 -3 -0.06 0.00 2 -0.06 0.00
2 -1.5 -1.49 -1.47 -1.5 -0.02 0.00 1 -0.02 0.00

Cohort 3 0 0.00 0.02 0 0.00 0.00 0 0.00 0.00
4 0 0.00 0.02 1.5 0.03 0.00 -1 0.03 0.00
5 1.5 1.44 1.46 3 0.00 0.00 -2 0.00 0.00

Dataset NO. 1 Dataset NO. 2 Dataset NO. 3

Table 7. Simulation Results: CCFEM and CCREM estimates for the three datasets in Table 4.

Assigned CCFEM CCREM Assigned CCFEM CCREM Assigned CCFEM CCREM
1 -1 -1.00 -1.00 -1 -1.00 -0.97 -1 -0.97 -0.97

Age 2 0 **-0.04 **0.06 0 -0.02 0.75 0 0.04 -0.51
3 1 1.00 1.00 1 1.00 1.00 1 1.01 1.01
1 -1 -0.99 -0.99 -1 -0.98 -1.04 -1 -1.07 -1.03

Period 2 0 0.00 0.00 0 0.00 0.01 0 0.00 0.03
3 1 1.00 1.00 1 0.98 1.03 1 0.97 1.00
1 -1.5 -1.53 -1.63 -3 -2.98 -3.61 2 2.09 2.60
2 -1.5 -1.50 -1.60 -1.5 -1.46 -2.24 1 0.97 1.48

Cohort 3 0 0.00 -0.10 0 0.00 -0.73 0 0.00 0.51
4 0 0.02 -0.07 1.5 1.53 0.75 -1 -1.03 -0.51
5 1.5 1.57 1.47 3 3.07 2.17 -2 -2.04 -1.52
6 2 2.02 1.92 4.5 4.53 3.66 -3 -3.08 -2.56

*Cohorts 1 and 2, and Cohorts 3 and 4 were not constrained to be equal in Dataset NO. 1
** Age 2 "Effect" in the CCFEM and CCREM Colums are model intercepts

Dataset NO. 1* Dataset NO. 2 Dataset NO. 3



In all datasets, the HAPC-CCFEMs and HAPC-CCREMs accurately and consistently estimate the “true” 
effects in all three datasets. All estimated coefficients are nonsignificantly different from the true effects. 
Thus, when applied to individual-level Age-Period-Cohort data, the HAPC method is both valid and 
reliable, and need not apply any constraints on the Age, Period, or Cohort terms. The primary mistake 
Luo and Hodges made was in trying to inappropriately apply the HAPC method to tabulated data in 
which C=P-A and in which no temporal variation was detectable. 
 
Next, we fit HAPC-CCREM using Markov Chain Monte Carlo simulations using Gibbs sampling on 
tabulated  rate data in which C=P-A, but in which the effect of C is not assumed to be linear. That is, we 
fit MCMC HAPC-CCREMs on data in Table 5. 
 
 Step 6: Fit MCMC HAPC-CCREM on data from Table 5:group-level data containing 3 Age, 3 Period, 
and 5 Cohort Effects in which C=P-A. Also, we test if we can replicate estimates from CCFEMs and 
CCREMs on data from Table 4 using MCMC HAPC-CCREM. 
 

 
 
First, the MCMC HAPC-CCREMs accurately and consistently estimate the “true” A, P, and C effects in 
the individual-level data. Furthermore, the point estimates are more accurate than those estimated by the 
HAPC-CCREM in Table 7.  
 
Second, even for tabular data in which C=P-A identification problem hinders model convergence for the 
HAPC-CCFEM and HAPC-CCREM, the MCMC HAPC-CCREM estimates A, P, and C effects that are 
consistent with the “true” effects.   
 
Step 7: Finally, we fit MCMC HAPC-CCREMs to data simulated from empirically estimated APC 
effects from both individual-level data and from tabulated rate data. That is, we use the HAPC-CCREM 
modeling framework to determine if these models can retrieve the estimated APC effects in data 
simulated from (1) results presented by Powers (2013) looking at variation in US infant mortality rates by 
mother’s age, mother’s birth cohort, and year of birth; and (2) results estimated from APC models using 
the intrinsic estimator (IE) to estimate age-, period-, and cohort-based variation in non-Hispanic black 
men’s mortality from infectious diseases between 1960 and 2009. In the first case, cohort is self-reported 

Table 8. Simulation Results: MCMC estimates for the three datasets in Table 4 and Table 5.

Table 4 MCMC Table 5 MCMC Table 4 MCMC Table 5 MCMC Table 4MCMC Table 5 MCMC
1 -1 -0.99 -1 -0.95 -1 -0.99 -1 -0.64 -1 -1.00 -1 -1.08

Age 2 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
3 1 1.00 1 0.97 1 1.00 1 0.66 1 1.01 1 1.03
1 -1 -0.99 -1 **-1.02 -1 -0.99 -1 -1.33 -1 -0.98 -1 -0.95

Period 2 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
3 1 0.98 1 1.08 1 0.98 1 1.39 1 0.98 1 0.92
1 -1.5 -1.47 -1.5 -1.40 -3 -2.98 -3 -2.28 2 2.02 1 0.60
2 -1.5 -1.45 -1.5 -1.44 -1.5 -1.45 -1 -0.63 1 1.04 .9 0.59

Cohort 3 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 .25 0.00
4 0 0.03 0 -0.05 1.5 1.53 .5 0.14 -1 -0.97 -.25 -0.43
5 1.5 1.57 1.5 1.34 3 3.07 3 2.22 -2 -1.92 -.1 -0.18
6 2 2.03 4 4.53 -3 -2.96

*Cohorts 1 and 2, and Cohorts 3 and 4 were not constrained to be equal in Dataset NO. 1
** Period and Cohort Coefficients Centered on P2 and C3

Dataset NO. 1* Dataset NO. 2 Dataset NO. 3



by the mother and thus the APC data structure is a real-life example of the data structure depicted in 
Table 4. In the second case, five year age-specific death rates among US black men are tabulated across 
five year time periods. Thus, in this case the data structure is a real-life example of the data structure 
depicted in Table 5, where P-A=C.  
 
Preliminary results (not presented) show that the MCMC HAPC-CCREMs are able to retrieve the original 
estimates of age, period, and cohort effects in both sets of simulated fake data.  
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