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Abstract

This article analyzes the performance of White’s index of spatial proximity as a

measure of activity-space segregation using sampled data. It relies on data collected

from volunteers with a mobile phone application and data generated from computer

simulations to construct empirical sampling distributions of the index’s estimator at a

range of sample sizes and to test a bootstrap approach for evaluating the uncertainty

of any individual estimate. The empirical distributions suggest that this index may

be estimated with essentially no bias using coarse trajectory data with sample sizes

as low as several hundred people. In addition, the uncertainty of individual estimates

can be approximated well using bootstrap methods. The article concludes that these

statistical properties, combined with the index’s flexibility for measuring segregation

at a range of scales by modifying its distance function, make it a valuable tool for

research on activity-space segregation.
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Introduction

Palmer (2012) offers a framework for quantifying activity-space segregation, defined

as a systematic separation in the spaces people move through as they go about their

daily activities. One of the proposed measures of activity-space segregation is an ex-

tension of White’s spatial proximity index, which may be used to capture information

about differences in the places and the people with which different groups come into

contact.

The spatial proximity index appears to be particularly well-suited for measur-

ing activity-space segregation because it may be used with a variety of distance func-

tions to capture segregation at different scales, and because there are reasons to think

it may be estimated from sample data with effectively no bias and with low uncer-

tainty. These statistical properties are important because activity-space segregation,

unlike residential segregation, cannot be measured from census data. Activity-space

segregation indexes must be constructed from samples of the trajectories followed

by individuals who are themselves sampled from the population. Moreover, current

methods for obtaining these samples generally require a trade-off between the num-

ber of points that may be sampled from each person’s trajectory and the number of

people who may be sampled from the population: Those methods that permit the

sampling of fine-grained trajectory information also make it hard to generate large

samples of individuals, while those methods that permit large samples of individuals

are limited to coarse trajectory information.

This article explores the extent to which the spatial proximity index may be

estimated from sampled data. It uses highly detailed trajectory data collected from

mobile phones, combined with data drawn from large computer simulations of full city

populations, to evaluate a straightforward estimator of the index. In doing this, the

article contributes to the growing field of human mobility research by using unique

data to test and refine a new empirical method for understanding spatio-temporal
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social divisions.

1 Background

1.1 Spatial Proximity

The primary building block of the activity-space extension of White’s spatial prox-

imity index is the average proximity between individuals throughout the day, with

proximity calculated using various functions depending on the specific context in

which the index is employed. The index compares the average proximity among

members of each group and the average proximity among individuals of both groups

pooled, with each average weighted by population:

SPa =
Pxx + Pyy

Pbb
(1.1)

where:

Pxx =
T∑
t=1

nxt∑
i=1

nxt∑
j=1

nxtf(dijt)

(n2
xt − nxt)

(1.2)

where nxt is the number of members of group G1 at time t, f(dijt) = e−dijt , ∀ i 6= j,

and dijt is the geographic distance, along the spatial axes, between individuals i and

j at time t, and where Pyy, Pbb, nyt, and nbt are defined analogously for members of

group G2 (yy) and for members of both groups pooled (bb).

The extent to which this index can be accurately estimated from sampled

locations instead of full trajectory data and from sampled individuals instead of full

population data depends largely on the estimation of Equation 1.2. This equation
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can be represented as simply the weighted mean of a set of arithmetic means:

Pxx =
T∑
t=1

[
nxt

(
nxt∑
i=1

nxt∑
j=1

vijt
n2
xt − nxt

)]
,∀ i 6= j (1.3)

where vijt = f(dijt). The expression in the inner parentheses is just the mean of a

matrix of transformed distances, excluding the diagonal (hence the subtraction of nxt

from the denominator). That the mean of a sample of these distances is an unbiased

estimator of the full trajectory mean can be easily proved, and the Law of Large

Numbers tells us that the sample mean will converge to the full trajectory mean as

sample size increases. Moreover, the Central Limit Theorem shows that the sampling

distribution of the mean will converge to normal, although in this case, it will be a

truncated normal distribution (for most relevant distance functions) because all of

the distances must be above zero (since two people cannot occupy exactly the same

space).

The inclusion of nxt in the outer expression complicates things in that this

is also a random variable—in this case, a binomially distributed one. The expected

value of the product of random variables is equal to the sum of (1) the product of

their expectations, and (2) their covariance (E[XY ] = E[X]E[Y ] + COV[X, Y ]). In

this case, however, the covariance of a sample estimate of nxt and the estimate of the

mean in the inner expression should converge to zero as the sampling distribution

converges to normal because the expectation of the mean of a normal distribution

does not depend on sample size. Thus, if Pxx is estimated using sample values for all

of the distances and for nxt, then the expected value of the estimate can be written

as

E[P̂xx] =
T∑
t=1

[
E[n̂xt]

(
n̂xt∑
i=1

n̂xt∑
j=1

E

[
vijt

n̂2
xt − n̂xt

])]
,∀ i 6= j (1.4)

Because n̂xt is a binomially distributed random variable, its expected value is

equal to ntpx, where nt is the sample size at time t and px is the proportion of Group
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1 members in the population at time t. Although this, on its own, would be a biased

estimator of nxt, dividing by sample size, nt, gives an unbiased estimator of px. (This

division can been done in each of the terms of the numerator and denominator of ŜP
a
,

which is equivalent to multiplying the expression by nt/nt = 1.) Thus, an unbiased

estimator of Pxx is:

P̂xx =
T∑
t=1

[
n̂xt
nt

(
n̂xt∑
i=1

n̂xt∑
j=1

vijt
n̂2
xt − n̂xt

)]
,∀ i 6= j (1.5)

A final complication arises in the full expression for the estimator of SPa:

ŜPa =
P̂xx + P̂yy

P̂bb
(1.6)

The sampling distribution of this estimator is very hard to evaluate because it results

from the ratio of random variables that are themselves the products of normally and

binomially distributed random variables. However, we can show that this is effectively

an unbiased estimator of SPa under the conditions we would expect to encounter in

real data. To see this, consider the expression as:

ŜPa =
P̂xx

P̂bb
+
P̂yy

P̂bb
=

T∑
t=1

[
p̂xt

v̄xt
v̄bt

+ p̂yt
v̄yt
v̄bt

]
(1.7)

where p̂xt and p̂yt are the sample estimates of the proportions of Group 1 and Group 2

members in the population at time t and v̄xt, v̄yt, and v̄bt are the sample means of the

distance function values for the distances between, respectively, Group 1 members,

Group 2 members, and the members of both groups pooled. Assuming zero covariance

between p̂xt and v̄xt/v̄bt (a reasonable assumption, as discussed above), the expected
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value of this estimator is:

E[ŜPa] =
T∑
t=1

[
E[p̂xt]E

[
v̄xt
v̄bt

]
+ E[p̂yt]E

[
v̄yt
v̄bt

]]
=

T∑
t=1

[
pxtE

[
v̄xt
v̄bt

]
+ pytE

[
v̄yt
v̄bt

]]
(1.8)

The terms v̄xt/v̄bt and v̄yt/v̄bt are ratios of normally distributed random vari-

ables for which we would expect positive covariance between the variable in the nu-

merator and that in the denominator (since the denominator includes all of the dis-

tances that are in the numerator). Importantly, the distributions of these variables

are truncated such that they can only take values above zero. Rice (2008) derives the

following formula for the expected value of just such an expression:1

E
[a
b
|b 6= 0

]
=

E[a]

E[b]
+
∞∑
i=1

(−1)i
E[a]〈ib〉+ 〈a,i b〉

E[b]i+1
(1.9)

where 〈ib〉 is the ith central moment of b and 〈a,i b〉 is the mixed central moment of a

and b, defined as:

E
[
(a− E[a])(b− E[b])i

]
(1.10)

The summation in Equation 1.9 is a Taylor series expansion that shrinks as the

variances of a and b shrink relative to their expected values, and as the expected

value of a shrinks relative to that of b. The variances of v̄xt, v̄yt, and v̄bt are equal

to the population variances divided by the sample sizes, so they necessarily shink

as sample size is increased. Moreover, the sample size in question is the number

of distances between people, which is a square function (n2 − n) of the number of

people in the sample (n), and therefore increases rapidly as additional people are

added.

The relationship between the expected values of v̄xt and v̄bt and between v̄yt

and v̄bt depend on the distance function used and the level of segregation. In a

1The derivation is shown in detail in Rice’s supplementary material at http://www.faculty

.biol.ttu.edu/rice/ratio-derive.pdf.
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highly segregated city, we would generally expect v̄xt and v̄yt to be larger than v̄bt

when the negative exponential is used as the distance function, signifying that people

tend to be more proximate to members of their own group then to members of the

opposite group. We would expect the reverse to be true when the identity function is

used (since proximity is captured by smaller values of the identity function). In less

segregated cities, we would expect the values v̄xt and v̄bt and of v̄yt and v̄bt to be closer

together, regardless of the function used. Even in the case of the negative exponential

function in a highly segregated city, however, it appears that the difference between

v̄xt and v̄yt, on one hand, and v̄bt, on the other, is outweighed by the effect of the

small variances noted above, which shrink this term to the point of disappearance

even at moderate sample sizes.

It appears, therefore, that we can treat ŜP
a

as an effectively unbiased estimator

of SPa, even if it is not formally unbiased.

The precision of this estimator remains to be seen and is difficult to calculate.

There is necessarily some degree of correlation between sampled distances across

individuals, and if the index is calculated by sampling people and then estimating each

person’s trajectory, there will necessarily be correlation of distances across time. This

correlation can lead to variance that is difficult to estimate using standard parametric

analysis, but that may be estimated empirically.

1.2 Activity-Space Data Sources

Collecting data on activity-space segregation means collecting data on human move-

ment. There are a number of methods that can be used for this purpose, and it is

useful to think of these methods as falling into two basic categories (which also apply

to the collection of data on any group of moving objects): Eulerian and Lagrangian.

The Eulerian approach involves picking points in space and recording the people who

move past these points. In contrast, the Lagrangian approach involves picking people
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and recording the space through which these people move (Ōkubo & Levin, 2001).

Censuses are a type of Eulerian approach, whereas time-use surveys are a type of

Lagrangian approach. The latter are better suited for studying activity-space segre-

gation, but there are limits to what can be learned from self-reported movement data,

given faulty perception and memory, and the logistical problems of implementation

on a large scale (Stopher, FitzGerald, & Xu, 2007; Murakami & Wagner, 1999; Golob

& Meurs, 1986).

An alternative to self-reported movement data is to attach to each individ-

ual a device that automatically measures and records the individual’s location or

transmits signals to an external receiver that does so. Until recently, this was an

expensive proposition that could be done only on a relatively small scale. The rapid

and widespread adoption of mobile phones by people around the world has changed

all of this. The simplest of these devices leave traces of their locations every time they

transmit signals to a cell tower, and the more sophisticated ones can determine their

own locations based on signals received from cell towers, satellites, and other sources.

A growing body of research shows the variety of ways in which mobile phones may be

used to study human movement and the quality of the data they are able to produce

(Palmer et al., 2013; Ahas, 2011; Ahas & Mark, 2005; Asakura & Hato, 2004).

Methods that rely on locations estimated by each research subject’s mobile

phone are generally referred to as “active” mobile phone positioning (Ahas, 2011),

since they require the active participation (and consent) of the subject. These meth-

ods generally involve the distribution to participants of some sort of tracking software,

and sometimes also the phones on which it will run. As a result, there are practi-

cal limits to the sample sizes that may be achieved from active positioning. At the

same time, active positioning methods offer the highest resolution information on

participants’ movement trajectories.

In contrast, methods that rely on the traces of mobile phone locations that
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are detected by external receivers are referred to as “passive” mobile phone posi-

tioning (Ahas, 2011), since these methods do not require any effort by the people

being tracked. These methods generally involve the researcher obtaining massive

volumes of anonymized call detail records (CDRs) from a mobile network provider.

Each CDR includes an identifier of the cell tower with which the user was in closest

proximity when placing a call, receiving a call, or transmitting data (Isaacman et al.,

2010; Wesolowski & Eagle, 2010). Although the identity of the individual in each

record is hidden for privacy reasons, researchers are sometimes able to obtain basic

demographic information that can be used in studies of segregation (Toomet, Silm,

Saluveer, Tammaru, & Ahas, 2012). Although CDRs have much lower resolution than

active positioning data—both because each location is estimated with lower precision

and because each person’s trajectory is sampled much less frequently—they have the

advantage of very large sample sizes.

On one hand, both active and passive positioning can be thought of as La-

grangian approaches to human location since they both track the trajectories of in-

dividuals through time. Passive CDR methods, however, produce samples that are

large enough to be treated in a more Eulerian manner: One can select areal units in

a city, for example, and observe the people who move through these areal units using

sub-sampled CDR data—something that would not be practically possible with the

small sample sizes obtained with active positioning.

2 Data and Methods

This article relies on two data sources: (1) high-resolution active positioning data

collected from volunteers using an open source Android app called Space Mapper,

and (2) data drawn from computer simulations of full census populations moving

along the street networks of Buffalo and Utica, New York.
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2.1 Space Mapper Data

Space Mapper is an open source Android application that was released on Google

Play in August 2012 and available until December 2013 for volunteers who wished to

share their location data with the author.2 The app presented users with a detailed

demographic survey, and it then estimated and recorded their phones’ locations at

regular intervals. It did this without interfering with other phone operations, with

minimal drain on the battery, and in a manner that protected users’ data from being

disclosed to third parties. The only requirements were that volunteers be at least 18

years old, have an Android device, and consent to be research subjects.3

The Space Mapper data analyzed in this article was downloaded on May 26,

2013 and it includes all data shared by users between that date and the app’s August

2012 release (except for information from 67 users who withdrew from the study and

requested that their data be deleted). In total, there are 739,224 location estimates

from 900 users in 80 countries.

The analysis focuses on the highest resolution daily work-day trajectories from

the Space Mapper data: daily trajectories made during work days (Monday through

Friday) from which at least 288 location estimates were obtained (an average of at

least 1 estimate every 5 minutes) falling in at least 12 different hours. There are

419 such daily trajectories, representing 90 different participants. These participants’

ages and sexes are shown in Figure 1. Among these trajectories, the combined total

number of locations observed is 326,381.

The analysis of this data follows a Monte Carlo approach in the sense that it

uses repeated random sampling of locations from the high resolution trajectories to

2The application is still available at https://play.google.com/store/apps/details?id=edu

.princeton.jrpalmer.asm, but the data-sharing functions have been shut off, so it is now entirely
for users who wish to track their own activity-spaces. The source code is available at http://

activityspaceproject.com and http://github.com/JohnPalmer/SpaceMapper.
3The study was approved in advance by Princeton University’s Institutional Review Board for

Human Subjects, Office of Research Integrity and Assurance (Protocol 5310).
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Figure 1 – Age and sex of Space Mapper participants included in the high resolution
work-day trajectories analyzed in this article.

construct empirical sampling distributions of the estimator of the spatial proximity

index (Herzog & Lord, 2002). This provides a way to resolve questions of bias and

uncertainty that would be very difficult, if not impossible, to solve directly.

2.2 Simulation Data

The other source of data used in this article is two large computer simulations of

movement in the cities of Buffalo and Utica, New York. The primary purpose of these

simulations was to generate population-level movement data from which sampling

distributions for the index estimator could be constructed empirically. The basic idea

is this: If we have full population data, then even if there is no way to algebraically

calculate the expected value or distribution of the sample estimates of a given index,

we can estimate both of these things empirically by drawing repeated samples from

the full population. In so doing, we can assess the bias and uncertainty of the sample

estimates, as well as the effect of any procedures that may be used to correct the bias
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Buffalo Utica

Land Area (miles2) 40 16
Density (persons per
mile2)

7,206 3,710

Population 292,648 60,651
Black (% ) 37.2 2.9
Asian (%) 1.4 2.2
Hispanic (%) 7.5 5.8
Foreign Born (%) 4.4 11.9
White-Black D 73.9 48.5

Table 1 – Selected geographic and demographic characteristics of Buffalo and Utica,
New York, from 2000 census data.

or reduce uncertainty. All of this information can then be used to tailor and assess

the estimators we use when full population data is not available (i.e., in most research

settings).

For this purpose, real-life trajectories would be preferable, but obtaining them

for the full population of a city is simply not feasible. Simulated population data is a

useful alternative to the extent that the simulations are able to capture the properties

of real-life populations that influence the sampling distributions of the index. These

properties are likely to include: (1) the size of the total population, (2) the area of

the city and its population density, (3) the ratio of the populations of the two social

groups whose segregation is being measured, (4) the level of segregation in the city,

and (5) the geometry of the individual movement trajectories.

Buffalo and Utica were selected as the sites of the simulations because these

cities exhibit important differences along the first four of the above properties and,

therefore, provide a useful comparison. Buffalo is the second largest city in New York

State, with a population of 292,648, and over 7,000 people per square mile. It also

has a large and highly segregated black population: over 37% of Buffalo’s population

is black and, with a residential dissimilarity index score of 73.9, the city has one of the

highest levels of black-white segregation in the United States. Utica is smaller and

less dense, with a total population of 61,651 spread over 16 square miles (3,700 people
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per square mile). It also has a much smaller black population (2.9%) and lower levels

of residential segregation (D = 48.5). A summary of the geographic and demographic

characteristics of each city is shown in Table 1. Figure 2 shows the proportion of black

residents by census block group, making the high level of segregation in Buffalo, and

the lower level in Utica immediately apparent.

To capture these demographic and geographic properties, the simulations rely

on the full census population of non-Hispanic blacks and non-Hispanic whites in each

city, with each person initially placed within their reported census tract of residence.

As exact addresses are not included in the public census data, each person was placed

randomly along a road within his or her census tract. Thus, the simulations directly

incorporate the real-life demographic and geographic structure of each city to a large

extent.

Of the properties that likely influence sampling distributions, the fifth, trajec-

tory geometry, is the hardest to capture. The simulations rely on a type of random

walk known as the Lévy walk as a way to approximate the trajectory geometry of

human movement that has been observed in other studies (Jiang, Yin, & Zhao, 2009;

Rhee et al., 2011). Each simulated person independently performs road-network-

constrained, truncated Lévy walks for 8 hours of simulated time, moving at 4 km per

hour. This 8-hour period is followed by 8 hours during which everyone retraces their

steps back to their homes. For the remainder of the 24 hour period over which the

index is measured, the simulated people are kept at their home locations.

The Lévy walk is an extension of a simpler random walk, Brownian motion,

that was first developed to model the movement of particles suspended in a fluid and

later applied to the movement of living organisms and a wide range of other dynamic

processes (Bartumeus, 2007). Brownian motion involves a series of steps in which the

direction and distance of each step is selected at random. The direction of each step

is chosen from a uniform distribution (i.e., all directions are equally likely), whereas

13



Buffalo

under 20
20 − 40
40 − 60
60 − 80
over 80

Utica

under 20
20 − 40
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60 − 80
over 80

Figure 2 – Proportion of black residents in Buffalo and Utica census block groups,
based on 2000 census data.
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the distances are drawn from a normal distribution. In Lévy walks, the direction of

each step is also drawn from a uniform distribution, but the distances, `, are drawn

from a power-law distribution, such that P (`) = `−µ and 1 < µ < 3. If µ is set

to 3 or above, this distribution converges to the normal and the movement becomes

Brownian (Bartumeus, Catalan, Fulco, Lyra, & Viswanathan, 2002; Viswanathan et

al., 2002; Bartumeus, da Luz, Viswanathan, & Catalan, 2005; Bartumeus, 2007; Jiang

et al., 2009).

During the past three decades, ecologists have begun turning to the Lévy

walk as a model of animal movement because the Lévy walk is able to capture the

observed directional persistence of this movement, whereas such persistence is ignored

by Brownian models (Bartumeus et al., 2005). Lévy walks have been proposed as a

general model of animal movement at large spatial and temporal scales, and as a

specific model for the strategies that animals employ to search for food and other

targets in nature when they lack information about locations (Viswanathan et al.,

2002). For this purpose, Lévy walks outperform other search strategies under certain

conditions, and they may well be driven by internal biological mechanisms that result

from evolution (Bartumeus, 2007; Bartumeus & Levin, 2008).

One might expect the movement of humans within modern urban areas to differ

from that of animals in natural environments, and yet the Lévy walk appears to do

a very good job of characterizing the statistical properties of human movement, even

in cities. This was suggested for large scale movement by Brockmann, Hufnagel, and

Geisel (2006), on the basis of their analysis of the movement of bank notes throughout

the United States. (They used bank note circulation as a way to measure large-scale

movement patterns that would otherwise be hard to detect.) More recently, Jiang

et al. (2009) analyzed high resolution GPS traces from 50 taxicabs in four Swedish

towns over a 6-month period, and found that the statistical properties of the cab rides

were closely approximated with Lévy statistics. Rhee et al. (2011) found the same

15



with respect to the movement of people going about regular daily activities in a set

of urban and suburban locations.

On the other hand, Gonzalez, Hidalgo, and Barabasi (2008) suggest that the

Lévy-like statistical patterns observed in the aggregate in these studies do a poor job

of capturing the directed (non-random) and very regular patterns of movement that

individuals engage in on a daily basis as they shuttle between home, work, and a

small set of additional places. That finding is supported by evidence that individual

movement trajectories can be characterized by a relatively small number of “motifs”

(Schneider, Belik, Couronné, Smoreda, & González, 2013).

In spite of these doubts, however, Lévy walks may well be a good model for

population data needed to estimate sampling distributions of the spatial proximity

index because this index depends more on the aggregate relationships between people

than on the shapes of individual trajectories.

The specific rules of the simulations used here are as follows: For each step of

the Lévy walk every simulated person selects a direction and a distance at random.

The direction is constrained to whatever road they were on (forward or backward)

and it is selected from a uniform distribution. The distance is drawn from a truncated

power law distribution with µ set to 2 and the minimum and maximum set at 100

m and 100 km. If the simulated person encounters an intersection during one of the

steps, their decision to change roads is also based on a random draw from a uniform

distribution, while their direction (forward or backward) remains the same. If the

person reaches the end of a road or the simulation boundary, they automatically

reverse direction and continue whatever step they are on.

Several weaknesses of these rules should be addressed: (1) The simulated

people moved at a constant speed, whereas in reality, people move at a range of

speeds, particularly in an urban environment with multiple transportation modes.

(2) The constant speed was a walking speed rather than a vehicle speed, whereas in
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reality, prevalent vehicle use would be expected. (3) The simulated people were in

constant motion for 16 hours (8 hours out, 8 hours back) and then motionless for

the rest of the day, and the movement hours were identical for all simulated people,

conditions that obviously do not hold in reality. (4) A boundary was placed around

the simulation space and a maximum distance placed on the distribution from which

distances were drawn, whereas in reality, maximum distances are set by a number

of constraints and preferences that are likely to vary among people. (5) Finally, the

simulation boundary was set as the county boundary for Buffalo and as the city

boundary for Utica, whereas the index was calculated only for locations within the

city boundaries in both cases. This means that the Buffalo simulation allowed for

people exiting and entering the city during the course of the day, whereas the Utica

simulation did not.

The simulations might well be made more realistic by modifying each of these

characteristics. At the same time, however, doing so would make them increasingly

complex. These simulations were designed with a goal of simplicity, as initial evalu-

ations of the spatial proximity index with full population data.

One further concern about the simulations is whether the road network or the

truncation changed the trajectory geometries to such an extent that they cannot be

considered the product of Lévy walks. Although more testing should be done in this

regard, initial analysis of the trajectories from the Buffalo simulation showed that

the pattern of mean squared displacements over time (i.e. the mean squared distance

each person was from their starting point at each time slice) were in line with the

expectation of the Lévy walk.

The simulations were programmed in R and run on a set of high-memory,

multi-core servers using parallel processing techniques. As a general visualization of

the results, Figures 3 and 4 show simulated trajectories on a satellite map of each

city, with each person assigned a unique color (and with progressively decreasing

17



(a) Full street network
with all simulated paths

(b) Close-up with all simu-
lated paths

(c) Close-up with one sim-
ulated path

Figure 3 – Buffalo satellite image with simulated paths. Each person is given a unique
color and lines are drawn with varying thicknesses to aid in visualization.

(a) Full street network
with sampled paths

(b) Close-up with sampled
simulated paths

(c) Close-up with one sim-
ulated path

Figure 4 – Utica satellite image with simulated paths. Each person is given a unique
color and lines are drawn with varying thicknesses to aid in visualization.

line thicknesses to aid in distinguishing overlapping lines). Figure 5 shows the three-

dimensional space-time paths of ten people from each simulation.

3 Sampling Locations from Trajectories

To better evaluate the magnitude of the variability in spatial proximity estimates

made with coarse location samples, the index was calculated using replicate sub-

samples from the Space Mapper data. This was done using only high resolution

trajectories that fell substantially within the Barcelona city limits (72 daily trajecto-
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(a) Buffalo (b) Utica

Figure 5 – Space-time paths of 10 people’s paths in Buffalo and Utica simulations.
Time is the vertical axes; space is horizontal, with each city’s street network drawn in
grey at the base.

ries in total, made by 13 people). For each person, the highest resolution trajectory

was selected, and 500 sub-samples were drawn from this trajectory at each of 9 sample

sizes. The spatial proximity index calculated from these subsamples was compared

with that calculated from the full trajectory data.

The results are shown in Figure 6. This plot shows the distribution of the

estimates from each sample, with the central 95% of estimates marked in grey, the

central 50% marked in black, the median marked in orange, and the mean marked in

yellow. The index value computed with full trajectory data is shown by the horizontal

red line.

That the full trajectory index value is nearly identical to the sample mean sup-

ports the analytical conclusion, above, that this is an effectively unbiased estimator.

In addition, the results show a relatively small amount of variability in the sample

estimates, with 95% of the data falling within a 0.1 point range on the index scale.

This is important because variability was the major concern with this index. At the
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Figure 6 – Male-female activity-space spatial proximity index (SP) using identity as
distance function. Indexes are calculated using 500 replicate location samples drawn
at each of 9 sample sizes from high resolution trajectories of 9 men and 4 women in
Barcelona. Plot shows central 95% (grey), central 50% (black), median (orange), and
mean (yellow) of the sample estimates. The index value computed with full trajectory
data is shown by the horizontal red line.

same time, however, we should be cautious in reading too much into this result be-

cause it includes only variability introduced by sampling locations from trajectories,

not the additional variability that can be expected from sampling people from the

population.

4 Sampling People from the Population

Estimating the uncertainty of sample inferences of the spatial proximity index using

samples of people from the population is complicated. At the core of the problem is

the fact that the indexes are calculated from observations of pairs of people, whereas

sampling is most likely to be done on individuals. If n individuals are sampled, then

each sampled individual will be used in the measurement of n − 1 distances, and

the probabilities of those distances will not be independent of one another. Without
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knowing the covariance among the distances, it will be impossible to estimate the

uncertainty of the inferences drawn from these samples algebraically.

One solution, of course, would be to sample pairs instead of individuals. If

pairs were drawn without replacement of either member of each pair—such that no

individual was sampled in any more than one pair—then we could assume indepen-

dence and estimate uncertainty algebraically using standard methods. The drawback

of this approach, however, is that the recruitment of n volunteers would be necessary

to achieve a sample size of n/2 pairs. In contrast, sampling n individuals using the

first approach would yield n2−n pairs. It is worthwhile, therefore, to explore how the

covariation among sampled individuals affects the uncertainty of sample estimates of

the index in practice.

Figures 7 and 8 show population values and estimates of the black-white

activity-space spatial proximity index for each simulation, calculated from individuals

sampled at sample sizes ranging from 20 to 1000. The index is calculated using both

the negative exponential (Figure 7) and the identity function (Figure 8).

The population value for the negative exponential version of the index is 1.3 in

Buffalo and 1.04 in Utica, marked on the plot with the dotted and dashed horizontal

lines (Figure 7). These values indicate that whites were more proximate to other

whites than they were to blacks and that blacks more proximate to other blacks than

they were to whites in both simulations, but in Utica the differences were very small

(this index takes the value 1 when there is equal mean proximity among same and

opposite group members).

For the identity function version (Figure 8), the population value is approx-

imately 0.96 for Buffalo and 0.99 for Utica, marked again with the with the dotted

and dashed lines. These values are consistent with the negative exponential values:

They also indicate that people in each simulation tended to be more proximate to

members of their own race than to members of the opposite race. For the negative
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exponential, this is shown by values above 1, whereas for the identity function, it is

shown by values below 1. The negative exponential version is farther from 1, show-

ing greater segregation, than the identity version because it places more weight on

close distances, dropping off quickly as distance increases and e−d approaches 0. In

contrast, the identity function places equal weight on all distances. The difference

can be understood best as a question of the spatial scale on which the segregation is

measured, with the identity function measuring segregation at a much larger scale—

essentially zooming out and viewing the city from a distance. This has substantive

importance, given, for example, changing contours of suburbanization.

The light red (Buffalo) and light orange (Utica) areas show the central 95%

of estimates calculated with each function. The dark red and orange areas show the

central 50% and the solid red and orange curves show the means. Finally, the red

and yellow circles with vertical confidence bars show the mean and 95% confidence

intervals estimated from one sample with 500 bootstrap replicates at each sample size

for each city and function (Efron, 1979; Davison, 1997).

Three important insights may be drawn from these plots:

First, our estimator is effectively unbiased as predicted in Part 1. For both

versions of the index and both cities, the expected value of the estimator (the solid

red and orange curves)—at all sample sizes—is almost identical to the population

value (the dashed and dotted lines).

Second, the uncertainty in the estimates is relatively small. For sample sizes of

at least 100, 95% of the sample estimates of the identity function version fall within

approximately 0.03 units of the true value in Buffalo and 0.01 units of the true value

in Utica. This margin of error drops to 0.01 in Buffalo and 0.005 in Utica for sample

sizes of 400. For the negative exponential version, these margins of error are 0.16

for Buffalo and 0.05 for Utica at sample sizes of 100, and 0.08 and 0.02 at sample

sizes of 400. Even without conducting a formal analysis of statistical power, it is clear
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Figure 7 – Black-white activity-space spatial proximity index (SP) for Utica (yellow)
and Buffalo (red) simulation, using negative exponential distance function. Index values
were calculated using 500 population samples drawn at each of 10 sample sizes from
each city’s census population and each individual was simulated performing Lévy walks
along the street network. Plot shows central 95% (light areas), central 50% (dark
areas), and means (solid curves) of the sample estimates. The index values computed
with full population data are shown by horizontal dotted (Buffalo) and dashed (Utica)
black lines. The colored circles with confidence bars show bootstrap estimates from
individual samples drawn at each sample size.
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Figure 8 – Black-white activity-space spatial proximity index (SP) for Utica (yellow)
and Buffalo (red) simulation, using the identity function as the distance function. Index
values were calculated using 500 population samples drawn at each of 10 sample sizes
from each city’s census population and each individual was simulated performing Lévy
walks along the street network. Plot shows central 95% (light areas), central 50% (dark
areas), and means (solid curves) of the sample estimates. The index values computed
with full population data are shown by horizontal dotted (Buffalo) and dashed (Utica)
black lines. The colored circles with confidence bars show bootstrap estimates from
individual samples drawn at each sample size.
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that the differences between Buffalo’s and Utica’s values for each index would be very

likely detected in samples as low as 100.

Third, bootstrap methods do a good job of capturing the uncertainty of the

estimates. At each sample size, the bootstrapped 95% confidence interval is approx-

imately the same length as the interval of the central 95% of the sample estimates

(which can be taken as the true uncertainty of the estimator) and nearly all of the

bootstrapped confidence intervals contain the true population value.4

All of this suggests that the activity-space spatial proximity index can be

estimated quite well with a relatively small sample, so long as that sample is repre-

sentative. If faced with the choice between spending money on making a sample more

representative (e.g., but offering sufficient compensation and equipment to minimize

non-response among participants who are selected randomly) or making it larger (e.g.,

by acquiring CDR data or developing a large citizen-science project), for this index it

is probably better to spend the money on representativeness, even if this means the

sample will include only 100 or 200 people.

An additional issue raised by Figures 7 and 8 is that the estimates made with

the negative exponential distance function have much more variability than those

made with the identity function. This might be taken as a reason to prefer the iden-

tity function version of the index, but that would probably be a mistake: The two

versions measure segregation on different scales and there may be important substan-

tive reasons to prefer the negative exponential. Most notably, the negative exponential

version places more weight on the distances within which in-person social interaction

is actually possible, whereas the identity version does not differentiate between the

difference between cities’ activity-space spatial proximity values are probably larger

4Although the bootstrapped confidence intervals are not totally aligned with the central 95%
intervals, this is expected because each bootstrap interval is created from only one sample. This
lack of alignment would also exist with parametric estimates of the confidence interval—indeed, the
proper frequentist interpretation of a confidence interval is that it is expected to encompass the true
value 95% of the time under repeated sampling.
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when the index is measured using the negative exponential than when it is measured

using the identity function, so the greater variability may not make it any harder to

detect differences. Indeed, it may well be easier to detect them.

5 Conclusions

The activity-space extension of White’s spatial proximity index is well-suited to cap-

ture differences in contact with places and people at different scales, depending on

the distance function used. It can be estimated effectively without bias using sam-

pled trajectory points from samples of people and it performs well even at sample

sizes in the hundreds range or lower. Although trajectory resolution is not vital for

this index’s estimation, its robustness to small samples of people makes it ideal for

a sampling scheme in which a small, representative sample of people is drawn and

offered compensation, as well as any necessary equipment, to share several days of

data on their movements using a mobile phone tracking application.
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