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Abstract 

Better understanding genetic factors and mechanisms involved in regulation of human aging and 

life span may contribute to development of personalized medical help and improvement of 

population health. Numerous attempts to find genes and identify genetic mechanisms involved in 

regulation of human aging and longevity using genome wide association studies (GWAS) had 

limited success. The incompliance between information about aging and longevity accumulated 

in the field and data and methods used in genetic analyses might be a reason for smaller than 

expected progress in the field. We show that the use of demographic and longitudinal data, 

integrative models, and methods allows for substantial improvements of the efficiency of genetic 

analyses. The results of analyses of longitudinal data from the Original Framingham cohort 

contribute to better understanding the roles of genes in dynamics processes of aging changes and 

their effects on longevity. The results of genetic analyses of data from the illustrate potential of .  

Introduction 

The genetics of human aging and longevity became the subject of intensive analyses during last 

decades ranging from studies of candidate genes  [1-3] [4, 5] [6] to genome-wide association 

studies (GWAS) [7-12] that involve hundreds-of-thousands to millions of genetic variants 

(SNPs, i.e., single-nucleotide polymorphisms).  

The literature review on genetics of human aging and longevity indicates that the efficiency of 

GWAS of these traits is low: Most associations detected in these studies have not reached 

genome-wide level of statistical significance. They also suffer from the lack of replication in 

studies of independent populations. Two possible causes might contribute to this situation. One 

deals with the lack of comprehensive conceptual framework that would allow one to describe the 

roles of genes in these traits in a way appropriate for efficient statistical analyses. Another cause 

is related to the lack of systemic statistical approaches that would allow for integrating available 

information and data on aging and life span. In this paper we will discuss the possibility of 

improving the efficiency of statistical models and methods used in genetic analyses of aging and 

life span. Specifically we show that application of bio-demographic ideas, models and methods 

to longitudinal data has a potential to substantially improve the efficiency of genetic analyses, 

and address fundamental questions on dynamic aspects of aging related changes and their 

connection to lifespan that have never been addressed before.  

Age patterns of genetic frequencies: What do they say about genetics of life span?.   

Common age-associated health disorders, such as cancer, CHD, stroke, diabetes and 

asthma, are major contributors to old age morbidity and mortality. It seems natural to expect that 

genetic variants which increase risks of such diseases (also called “risk alleles” or “risk 

genotypes”) would negatively affect survival. Similarly, beneficial genetic variants will play 

protective roles against diseases and contribute to increases in lifespan. The genetic frequencies 

corresponding to such variants will have monotonically declining (in case of harmful alleles) or 



monotonically increasing age trajectories (in case of beneficial alleles), see left panel in Fig. 1. 

Note that we deal with age trajectories of minor allele frequencies here. The results of many 

genetic studies of human longevity confirm these expectations, see [13-18], among others.  

It turns out, however, that associations of genetic factors with diseases and lifespan are 

not limited by the relationships described above. More complicated connections which have 

surprising manifestations have been also observed. In [19, 20] the empirical frequencies of some 

candidate alleles/genotypes decreased until middle old ages, reached their minimum values, and 

then increased in the oldest old resulting in the appearance of such initially “harmful alleles” 

with relatively high frequency among the long-living individuals (the second panel from the left 

in Fig. 1). It looks as if initially harmful effects of such alleles on lifespan manifested earlier in 

life became neutralized and then transformed into beneficial effects later in life. The increasing 

and then declining patterns of the age trajectories of genetic frequencies were described in [21].  

The “paradoxical” presence of “risk alleles” for common diseases in genomes of  long-living 

individuals were discussed in  [22-26] among others. 

Several other patterns of age trajectories of genetic frequencies were also observed in our 

preliminary studies. Two of them deal with the frequencies that stay about the same among the 

adults and among the persons of early 

old ages, and experienced major changes 

only at the oldest old ages somewhat 

after 80-85 years of age. The one part of 

these trajectories increases and another 

part declines at the oldest old ages (the 

third panel from the left in Fig. 1). 

Relative stability of such frequencies 

among adults and the old people may 

indicate that these genetic variants either do not belong to the sets of risk alleles affecting major 

human diseases specific for these age categories, or they have opposite influences on risks of 

different diseases which compensate for the effects of these factors on total mortality. An 

increasing pattern may indicate that corresponding genes provide protective effects against lethal 

events at late life. A declining pattern indicates that these genes provide their carriers with 

increased vulnerability to mortality risk at the oldest old ages. Genes of both types are likely to 

be involved in regulation of aging related diseases. 

The remaing two patterns are characterized by changes in genetic frequencies from the 

adult to old ages and relatively stable behavior after that at the oldest old ages (right panel in Fig. 

1). The corresponding genes may belong to the set of protective (deleterious) alleles for a 

number of common diseases of the adult and earlier old ages. They do not influence risks of 

mortality and diseases at the oldest old ages. These genes are likely to have opposite effects on 

major human diseases.  

Demographic ideas that advanced the genetic studies of aging and longevity  

Researchers studying the genetics of human aging and longevity tend to underestimate 

the role of demographic information and bio-demographic ideas in genetic analyses. The benefits 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Eight age patterns of genetic frequencies 

corresponding to different effects of genetic 

variants on health and survival 



of combining demographic and genetic information in their joint analyses were demonstrated in 

[19] [20] [21] [27]. These analyses showed that the use of mortality data and models of hidden 

heterogeneity in susceptibility to death help improve the accuracy of genetic estimates in genetic 

centenarian studies. The use of demographic information and models in analyses of data on 

genetically heterogeneous cohorts allowed researchers to compare the age patterns of mortality 

rates for carriers and non-carriers of candidate alleles and genotypes. Such comparisons could 

not be possible using data on genetic frequencies alone.  

The use of such methods to genome-wide association studies (GWAS) was stimulated by 

the fact that useful demographic information tends to be ignored in GWAS of human aging and 

longevity performed during several recent years. Such an extension takes advantage of the fact 

that the genetic information on aging and lifespan available for researchers is contained not only 

in the follow up data (which researchers traditionally use when they have access to such data). In 

most GWAS of human aging and longevity, performed so far, the bio-specimen collection for 

genotyping has been performed in population of individuals of different ages (e.g., as in the 

Original FHS cohort). It turn out that the age distribution of genotyped individuals at the time of 

bio-specimen collection contains important information about genetics of longevity. This 

information was typically ignored in GWAS, and conclusions on genetic influence on lifespan 

were derived from analyses of only follow-up data. Following the ideas described in Arbeev et 

al., (2011) we used genetic information from both the age distribution of genotyped individuals 

and from the follow up data to get more accurate estimates of genetic influence on lifespan.   

The analyses are based on the maximum likelihood approach which maximizes the joint 

likelihood function of the combined data comprised of the age structure of study participants at 

the time of bio-specimen collection and the follow-up data. The total likelihood of combined 

dataset is the product of the two likelihood functions representing each subset of available data. 

The benefits of such analyses stem from the fact that both likelihoods are functions of the same 

parameters describing the relationship between genetic factors and the phenotype of interest. 

These likelihoods are functions of the mortality rates for carriers, μ(x|G = 1), and non-carriers, 

μ(x|G = 0), and the initial proportion of the genetic variant, p0 = P(G = 1) (initial allele 

frequency). These mortality rates can be described parametrically (e.g., by the Gompertz, 

Gompertz-Makeham, or logistic curves). By maximizing the total likelihood function, one can 

estimate the respective quantities and test the null hypothesis on coincidence of survival 

functions for carriers and non-carriers of the minor allele using the likelihood ratio test.  

 

The likelihood function for joint analyses of data 

 

Let
0

kx , k = 1…K, be the ages at baseline (entry to the study) of individuals from the 

genetic subsample of the data and let 0, kxm
x , m = 1…Mk, be their ages at the time of biospecimen 

collection. Denote by )()()( 000 ,0,1, kkk xmxmxm
xNxNxN  the number of individuals in the genetic 

subsample who were aged 0, kxm
x  at the time of biospecimen collection and aged 

0

kx  at baseline. 

Here )( 0, kxmg xN  are the numbers of non-carriers (g = 0) and carriers (g = 1) of the respective 

allele/genotype. Let i  be the life span (it may be censored) of the i
th

 individual. Denote by 

)|( gGx  the hazard rate for carriers/non-carriers and by 
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where )(/)()|1( 00

1

0

kkk xSxpSxGP . The likelihood function of the data on the ages at 

biospecimen collection ( abcL ) and the likelihood function of the follow-up survival data ( surL ) 

are:  

1 0 0 0, ,

0 0

( ) ( )
0 0

, ,
1 1

~ ( | ) (1 ( | ))
k

m x m x
k k

k k

MK N x N x

abc k km x m x
k m

L x x x x  

and  

0,

0

( )
1

,
1 1 0 1

~ ( | ) ( | )

g m x
k k

i

k

N x
MK

sur i g i m x
k m g i

L G g S x , 

where i  is a censoring indicator. The total likelihood function of the data relevant for genetic 

analyses of the genetic subsample is the product of the two likelihood functions:  

surabcLLL ~ . 

By maximizing this likelihood function one can estimate parameters of the mortality rates for 

carriers/non-carriers of the minor allele and the initial proportions for each genetic variant. Then 

the null hypothesis on coincidence of survival functions for carriers and non-carriers of the minor 

allele can be tested using the likelihood ratio test. The type of the effect of such genetic variants 

on survival (e.g., the protective effect so that the survival curve for carriers of the minor allele is 

shifted to the right compared to non-carriers, or the deleterious one so that the curve for carriers 

is shifted to the left, or the trade-off so that survival curves intersect) can be understood 

inspecting respective estimates of parameters and/or visualizing the estimated survival curves. 

The benefits of using this approach are investigated in simulation study [28]. The approach has 

been applied to the data collected in the Framingham Heart Study (FHS). Selected genetic 

variants showed highly significant negative associations with life span. 

 

Controlling for population stratification has to account for mortality selection. If some 

genetic variants influence mortality risk and others are neutral (i.e., do not affect this risk) then 

corresponding population is genetically heterogeneous with respect to individual susceptibility to 



death [29, 30]. The genetic structure of such population experiences aging related changes due to 

the process of mortality selection. Thus, population stratification may be caused not only by the 

differences in ancestry among study participants but also by mortality selection in genetically 

heterogeneous cohorts: individuals carrying harmful alleles or genotypes die first, and such 

selection changes (multidimensional) genetic distribution in the older population compared to 

that of the younger one. This effect is especially important if the population under study consists 

of left truncated birth cohorts of genotyped individuals. The left truncation in such cohorts can be 

induced by individual differences in ages at the time of bio-specimen collection (e.g., age 

differences at baseline, if the blood collection was done at baseline). Controlling for possible 

population stratification (e.g., using the Principal Component Analyses (PCA)[31]) may be 

efficient for phenotypic traits not affected by mortality selection (e.g., the eyes color). However, 

for longevity traits controlling for population stratification may eliminate all the effects of 

population structure including genetic effects on lifespan which we are interested in. Thus, the 

GWAS of human longevity with inappropriate use of methods of controlling for population 

stratification are likely to suffer from low level of statistical significance. It turns out that the 

effects of genetic clustering due to differences in ancestry can be separated from those induced 

by mortality selection of genetically vulnerable individuals.    

After such separation the GWAS in which the effects of clustering due to differences in 

ancestry are controlled by PCs corresponding to this clustering can be performed. The separation 

of the two components that induce population clustering will involve modification of the 

covariance matrix suggested for calculation of Principal Components (PCs) in Price e al. (2006) 

by removing the effects of population stratification due to mortality selection until ages at 

biospecimen collection. The new matrix is calculated by conditioning the genetic SNP vector on 

the values of the variable “age at biospecimen collection.” Conditioning on the age at 

biospecimen collection will eliminate effects of mortality selection in PCs making them 

dependent only on the effects due to differences in ancestry. The first several PCs (following 

Price et al. (2006)) are used in GWAS of human longevity.  

We used methods and approaches described above in the analyses of data on aging and 

lifespan from the Original Framingham cohort. Figs. 2, 3, 4 and 5 illustrate the results of GWAS 

of life span for males from the original FHS cohort using two different methods of controlling 

for possible population stratification. In one the 20 principal components were constructed using 

the population of individuals for whom the bio-specimen were collected at different ages (Figs. 

2,3). In the second method, 20 principal components were constructed using the population of 

individuals whose age at the time of bio-specimen collection did not exceed 60 years (Figs. 4,5).  

One can see from these figures that the results of analyses shown in Figs. 4 and 5 are more 

statistically significant then those shown in Figs. 2 and 3.   

   

 

 



 
Fig. 2. The graph of the QQ plot of the results of GWAS of human lifespan for 432 males 

from the Original FHS cohort. Analyses have been performed using EMMAX computer 

program controlling for birth cohort, smoking, and 20 principal components. Principal 

components were used to correct for possible population stratification. They were 

constructed using genetic data on 1009 unrelated individuals from the Original FHS 

cohort.   



 
Fig. 3. The graph of the Manhattan plot of the results of GWAS of human lifespan for 

432 males from the Original FHS cohort. Analyses have been performed using EMMAX 

computer program controlling for birth cohort, smoking, and 20 principal components. 

Principal components were used to correct for possible population stratification. They 

were constructed using genetic data on 1009 unrelated individuals from the Original FHS 

cohort.   



 
Fig. 4. The graph of the QQ plot of the results of GWAS of human lifespan for 432 males 

from the Original FHS cohort. Analyses have been performed using EMMAX computer 

program controlling for birth cohort, smoking, and 20 principal components. Principal 

components were used to correct for possible population stratification. They were 

constructed using genetic data on 1625 unrelated individuals from the Original FHS 

cohort whose ages at the time of bio-specimen collection did not exceed 60 years.   

 



 
Fig. 5. The graph of the Manhattan plot of the results of GWAS of human lifespan for 

432 males from the Original FHS cohort. Analyses have been performed using EMMAX 

computer program controlling for birth cohort, smoking, and 20 principal components. 

Principal components were used to correct for possible population stratification. They 

were constructed using genetic data on 1625 unrelated individuals from the Original FHS 

cohort whose ages at the time of bio-specimen collection did not exceed 60 years.   

 

 

 

Effects of selected variants on survival and age trajectories of physiological indices 

To show that selected genetic variants are associated with human survival we constructed 

survival functions for carriers and non-carriers of minor alleles of selected SNPs. Using available 

longitudinal data on repeated measurements of physiological variables we also evaluated average 

age trajectories of physiological indices for groups of individuals with different genetic 

background. The results for the four SNPs: rs115536959, rs10845099, rs5743998, and 

rs9971555 are shown in Figs. 2, 3, 4, and 5.  

One can see from these figures that selected SNPs have different influence on survival 

and on average age trajectories of physiological indices. The carriers and non-carriers of minor 

allele of the rs115536959 SNP have different average age trajectories of systolic and diastolic 



blood pressure.  The corresponding difference for carriers and non-carriers of minor allele of the 

rs10845099 SNP is much smaller. One can also see the difference in patterns of influence of 

corresponding SNPs on body mass index. There is also difference in the effects of rs5743998 and 

rs9971555 SNPs on serum cholesterol. The molecular biological mechanisms responsible for 

these differences require further analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 6. Age patterns of survival functions (top panel) and average age trajectories of pysiological 

indices (bottom panel) for carriers and noncarriers of minor allele of the rs11536959 SNP. 

 

 



 

Fig. 7. Age patterns of survival functions (top panel) and average age trajectories of pysiological 

indices (bottom panel) for carriers and noncarriers of minor allele of the rs10845099 SNP. 

 

 



 

Fig. 8. Age patterns of survival functions (top panel) and average age trajectories of pysiological 

indices (bottom panel) for carriers and noncarriers of minor allele of the rs5743998 SNP. 

 

 

 

 



 

 

Fig. 9. Age patterns of survival functions (top panel) and average age trajectories of pysiological 

indices (bottom panel) for carriers and noncarriers of minor allele of the rs9971555 SNP. 

 

Genetics of hidden biomarkers of aging: The need for dynamic modeling of physiological 

changes. More sophisticated analyses of longitudinal data can be performed using joint 

modeling of longitudinal dynamics of covariates and risks of time-to-event outcomes (e.g., [32-



51]). Although these methods address many important questions about behavior of repeatedly 

measured variables in the presence of informative censoring, they do not allow for evaluating a 

number of essential components of aging-related processes which are not directly measured in 

most longitudinal studies but play fundamental roles in longitudinal dynamics of physiological 

variables and other biomarkers. These essential components  include age-specific physiological 

norms [52-54], allostasis and allostatic load [55, 56], stress resistance [57-60], adaptive 

capacity (homeostenosis) [61, 62], and short-term stochasticity [63]. The information about these 

components is a part of knowledge about aging, health, and longevity accumulated in the 

research field which is typically ignored in statistical analyses of longitudinal data.  

To evaluate genetic influence on these hidden components from the data using methods 

of statistical modeling they have to be included into the model of longitudinal data and properly 

linked with measured variables as well as with health and survival outcomes. Such integrative 

analysis can be performed within a special methodological framework presented in the genetic 

version of the stochastic process model of human mortality and aging (GenSPM)[64]. As a 

result, the variables measured in a longitudinal study become dynamically linked together, with 

genetic and other E-factors, and with the essential aging processes. Altogether these variables 

provide a comprehensive description of the mechanisms of aging-related changes in human 

organisms. An important point is that the age trajectories of all aging-related variables can be 

efficiently estimated from the longitudinal data using SPM [65-67]. 

In contrast to the standard approaches for analyzing the effects of observed covariates on 

ages at onset of health or survival outcomes using the proportional hazard Cox-type regression 

models, SPM explicitly recognizes that such risks often are U- or J-shaped. The evidence for U- 

or J- shaped risks as functions of different physiological markers is abundant in epidemiological 

studies [68-76]. Biological studies of longevity also confirm the U-shape of dose-response 

curves (longevity hormesis effect [77, 78]). Therefore, the use of quadratic (U- or J- shaped) 

hazards in analysis is biologically meaningful.  

In short, GenSPM uses stochastic differential equations to describe age-dynamics of 

individual changes in physiological markers until death or end of follow-up. The coefficients of 

these equations are specified in terms of variables characterizing allostatic load, homeostenosis, 

stress resistance, and stochasticity for carriers of and non-carriers of selected genotypes. Our 

prior studies showed that this model permits identification of all these characteristics for carriers 

of selected genotypes [79, 80]. This model can incorporate “static” covariates to evaluate joint 

effects of genetic and non-genetic (environmental) factors on quality of death [64, 81].  

To understand the research results we briefly describe the version of the GenSPM used in 

this analyses. The evolution of physiological variables Yt  over age t is described by stochastic 

differential equation  

,),()),()(,( 1 ttt dWGtBdtGtfYGtadY                               

with the normally distributed initial condition 
0t

Y . Here G (G = 0, 1; 
1)1( pGP ) is a discrete 

random variable characterizing differences in genetic backgrounds among the groups of 

individuals, Wt is a Wiener process independent of 
0t

Y  and G. The coefficient ),( GtB  was 

considered constant in these applications.  

The effect of allostatic adaptation ),(1 Gtf [64, 82] is described as quadratic function of t. 

This choice comes from the empirical observations of the average trajectories of the 

physiological variables in the FHS, which generally have a quadratic form, although, of course, 



these average trajectories do not necessary have to follow ),(1 Gtf . 

The negative feedback coefficient ),( Gta  characterizes by strength of homeostatic 

forces. The decline in the absolute value of this coefficient with age represents the decline in the 

adaptive (homeostatic) capacity with age (“homeostenosis”) which has been shown to be an 

important characteristic of aging [57, 61, 62, 83]. We used a linear approximation of this 

coefficient as function of age. The U- or J- shapes of the mortality and morbidity risks as 

functions of various physiological variables and other risk factors were confirmed in a number of 

studies. This indicates that a quadratic function can capture dependence of the risk on deviations 

of trajectories of a physiological variable Yt from its “optimal” values [64, 84-88]. Such function 

has been used to describe mortality rate conditional on Yt and G:  

 
2

0 0 1( , , ) ( , ) ( ( , )) ( , )t tt Y G t G Y f t G t G .                  

Here ),(0 Gt  is the baseline hazard, 0 ( , )f t G  are “optimal” trajectories (“physiological norms”). 

We used the gamma-Gompertz (logistic) baseline hazards ),(0 Gt  [89]. 

The coefficient ),(1 Gt  characterizes stress resistance. Its increase with age corresponds 

to the decline in stress resistance because it narrows U-shape of the risk, i.e., making an 

organism more vulnerable to deviations from the “optimal” values. which can be considered as a 

manifestation of the senescence process [90, 91]. In our analyses  ),(1 Gt  was approximated by 

a linear function of age. 

The average age trajectories of respective physiological variables in long-lived (life span 

90  for females; life span 85  for males) female and male carriers and non-carriers of the 

APOE e4 allele were considered as “optimal” trajectories 0 ( , )f t G  in the model. The likelihood 

optimization and the statistical tests have been performed using corresponding Toolboxes in 

MATLAB.  It is important to note that maximization of the likelihood function of the genetic 

SPM is computationally extensive. Generally, it involves solution of the systems of ordinary 

differential equations (ODE) for each measurement and at each step of the likelihood 

optimization procedure. However, as our experience with these models shows, the calculations 

are feasible on modern computers and using modern statistical and technical software, e.g., 

MATLAB’s Optimization Toolbox and ODE solvers, or SAS/OR PROC OPTMODEL, 

implementing different optimization algorithms (such as the Newton-Raphson or trust-region 

methods) and the Runge-Kutta method for the ODE solution. Therefore, the use of such models 

in analyses of candidate SNPs is feasible, but the computational burden prohibits their 

applications to analyses of all SNPs in GWAS data. Taking this limitation and advantages of the 

model into consideration, the GenSPM was used for studying initially pre-selected SNPs.  

Figs. 10, 11, and 12 show age patterns of a number of hidden biomarkers of aging for groups 

of individuals carrying different numbers of longevity alleles. 



 

Fig. 10:  Estimates of the logarithm of the baseline hazard rates in the stochastic process 

model (Yashin et al., 2007a) applied to data on longitudinal measurements of four 

physiological indices and total mortality in individuals carrying different number of 

longevity alleles (<14 and >=14) out of the 27 such alleles identified in Yashin et al. 

(2012c): (A) estimates for body mass index (BMI); (B) estimates for diastolic blood 

pressure (DBP); (C) estimates for cholesterol (SCH); (D) estimates for ventricular rate 

(VR). P-values are for the null hypotheses on the equality of baseline hazards in the two 

groups.  
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Fig. 11.  Estimates of adaptive capacity in the stochastic process model (Yashin et al., 2007a) 

applied to data on longitudinal measurements of four physiological indices and total mortality in 

individuals carrying different number of longevity alleles (<14 and >=14) out of the 27 such 

alleles identified in Yashin et al. (2012c): (A) estimates for body mass index (BMI); (B) 

estimates for diastolic blood pressure (DBP); (C) estimates for cholesterol (SCH); (D) estimates 

for ventricular rate (VR). P-values are for the null hypotheses on the equality of adaptive 

capacities in the two groups.   

http://en.wikipedia.org/wiki/Carrier_protein
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Fig. 12:  Estimates of mean allostatic trajectories in the stochastic process model (Yashin 

et al., 2007a) applied to data on longitudinal measurements of four physiological indices 

and total mortality in individuals carrying different number of longevity alleles (<14 and 

>=14) out of the 27 such alleles identified in Yashin et al. (2012c): (A) estimates for body 

mass index (BMI); (B) estimates for diastolic blood pressure (DBP); (C) estimates for 

cholesterol (SCH); (D) estimates for ventricular rate (VR). P-values are for the null 

hypotheses on the equality of mean allostatic trajectories in the two groups. 

 

 

Conclusion 

 

The results of these analyses indicate that the use of demographic and longitudinal data in 

genetic analyses of aging and longevity may substantially improve our understanding of the roles 

of genetic factors in regulation of aging and life span. These results also show that control for 

population stratification in genetic studies of longevity related traits has to be used with care. The 

low efficiency of genetic studies of these traits might be related to the fact that the estimates of 

the effects of genetic factors on such traits can be reduced or eliminated when traditional 

methods of controlling for population stratification are used. The results show that involvement 

of longitudinal data in genetic analyses of aging and life span enriches our understanding of how 

genetic factors affect survival and how physiological indices mediate these effects. The use of 

http://en.wikipedia.org/wiki/Esophagus


GenSPM tool allowed for evaluating genetic effects on hidden biomarkers of aging. Altogether 

the results of these analyses indicate that statistical modeling could be an efficient tool for 

integrated analyses of genetic and phenotypic data on aging and longevity. More efforts are 

needed to integrate biological information into genetic analyses of longitudinal data. 
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