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Abstract

Many important theoretical and policy questions require an understanding of the

trajectory of death rates at advanced ages. Unfortunately, studying mortality at ad-

vanced ages can be very difficult: since absolute numbers of deaths are typically very

small, we must be careful to distinguish empirical regularities from stochastic noise. In

this abstract, I present an analysis of the best available data on mortality above age

80 with the aim of understanding what we can conclude about the shape of the hazard

function over that range. I also review and evaluate the options available for assessing

the quality of a hazard model’s fit to data. This problem has been discussed at length

in the literature, and is of importance to researchers and policymakers in a host of

fields. I expand on previous analyses by adding new data, considering more functional

forms, and improving the strategy for choosing which model provides the best fit.
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1 Introduction

In the developed world, life expectancy at birth continues to rise, fertility levels are low,

and populations are aging at remarkable rates. (Kinsella et al., 2005; Martin and Preston,

1994). This has dramatic implications for the needs societies will face in the future. In order

to fully contend with these implications, scholars and policymakers require a quantitative

understanding of death rates above age 80; that is, they need a mathematical function that

summarizes the age pattern of death rates at advanced ages1 with a few parameters. This

is important for several reasons.

First, the continuing debate about the limits, or lack of limits, to human longevity requires a

solid understanding of the empirical evidence on death rates at advanced ages to formulate

and evaluate theories that describe the process of aging (Horiuchi and Wilmoth, 1998;

Thatcher et al., 1998). Many of the existing theories imply that some functional forms

should reproduce observed death rates at advanced ages better than others (Gavrilov and

Gavrilova, 1991; Steinsaltz and Wachter, 2006; Vaupel et al., 1979). Furthermore, a host of

empirical studies have fit parametric hazard models to observational and experimental data

on old-age mortality as part of an effort to evaluate and develop theories of aging.

Second, many policymakers and planners need accurate, mathematical summaries of death

rates at advanced ages in order to produce forecasts and projections (Bongaarts, 2005;

Tabeau et al., 2001). Here, a low-dimensional summary of death rates at advanced ages is

useful because it permits projections or forecasts to focus on few parameters.

Finally, an understanding of old-age survival patterns is important for a number of other

research questions of great relevance to sociology, economics, and public policy. One ex-

ample is the relationship between improvements in old-age survival and changes in savings

and investment behavior; understanding how savings behavior changes as a function of

improvements in survival past retirement age has dramatic implications for public policy

(Sheshinski, 2007). In order to build models of behavioral responses to improvements in

survival at older ages, a mathematical function that captures the essential dynamics of

those changes is required.

Many functional forms have been proposed to capture the shape of mortality at advanced

ages (Tabeau et al., 2001; Thatcher et al., 1998). In this article, I present an analysis of the

1In this paper, I use the term ’advanced ages’ to refer to ages over 80.
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best available data on mortality above age 80, with the aim of updating and expanding our

understanding of which of the functional forms commonly used to parameterize survival fit

high-quality data on death rates over the age of 80 the best. Over a decade ago, Thatcher

et al. (1998) studied the fit of several functional forms to a unique and carefully constructed

database of deaths at advanced ages. My analysis is similar in spirit to that exercise, with

a few important differences: first, I make use of the considerable volume of data that have

become available since 1990. I also benefit from a recent, thorough review of the data’s

quality (Jdanov et al., 2008), which allows me to focus on the country-years where quality

is least likely to be a problem. The quantity of high-quality data available to today is

therefore considerably greater than was available a decade ago. I also expand the focus of

Thatcher et al. (1998) to several new functional forms that have appeared in the literature

since their study.

Finally, I make some modifications to the methods applied in Thatcher et al. (1998); in

particular, I propose the use of more principled criteria for assessing goodness-of-fit across

the functional forms considered. These criteria include an appropriate penalty for the

increased complexity of functional forms with more parameters. This is very important,

as it provides us with some guard against over-fitting idiosyncracies in the data that might

result from small sample sizes at advanced ages.

The full paper will explore the theoretical implications of these initial, empirical results,

and will be accompanied by an R package to allow others to perform similar investigations

in the future.

2 Methods

Data

I use the Kannisto-Thatcher (K-T) database on Old Age Mortality, which is the best

collection of data on mortality at advanced ages available (Kannisto, 1994; MPIDR, 2014).

The K-T database contains data on deaths and exposure above age 80 for 35 countries, with

some of the Scandinavian data going back to the mid-18th century. However, data quality

for mortality at advanced ages is a serious concern; see Jdanov et al. (2008) for a thorough

summary of the problems involved in analyzing them. In order to ensure that poor-quality
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data do not mislead us in selecting useful functional forms, I only study country-years of

data that were found to be of acceptable quality by Jdanov et al. (2008). Specifically, I

retained the cohort data from from all countries where more than half of the years were

of the highest quality, and the remaining years were of the second-highest quality in the

assessment the authors provided. Furthermore, I only selected countries and time periods

where deaths were reported by single year of age up to 104. This leaves us with data from

Denmark, France, West Germany, Italy, Japan, the Netherlands, Sweden, and Switzerland,

making a total of 285 country-years of data for each sex and single year of age. Table 1

describes the years and cohorts in our dataset for each country.

cohort start cohort end

Denmark 1841 1896
France 1871 1892

W. Germany 1881 1896
Italy 1881 1896

Japan 1871 1896
Netherlands 1871 1896

Sweden 1821 1896
Switzerland 1850 1896

Table 1: Cohorts from the Kannisto-Thatcher Database on Old Age Mortality used in
this analysis. Cohort data are from all possible years for the countries Jdanov et al. (2008)
found to be acceptable in their systematic review, and for which deaths by single year of age
are available (not imputed) up to age 104; that is, I choose all cohorts from countries that
Jdanov et al. (2008) found to have high-quality data based on their systematic review of the
countries’ period data. I considered countries to have high quality data when Jdanov et al.
(2008) found that more than half of the years were of highest quality, and the remaining
years were of the second-highest quality. I model ages 80-104.

Hazards

The central object of study in this project is the mortality hazard function. If the survival

curve for our population of interest is S(z), with S(z) ∈ [0, 1] for all ages z, then the hazard

is given by

µ(z) = −d logS(z)

dz
= − 1

S(z)

dS(z)

dz
. (1)
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This is the negative log-derivative of the survival function or, intuitively, it is the instan-

taneous rate of change of survival at age z divided by the fraction of the population left at

age z, and multiplied by −1. Hazard functions are nonnegative, since survival by age can

never increase and so dS(z)
dz is always less than or equal to 0, and S(z) is always between 1

and 0.

In practice, we are not able to observe the actual hazard function; instead, we often compute

central death rates as an approximation. These are given by

Mz =
Dz

Nz
, (2)

where Dz is the number of deaths between ages z and z + 1 in the time period being

considered 2, and Nz is the number of person-years of exposure in the time period being

considered. The central death rate we observe is a function of the continuous, underlying

hazard of death function µ(z).

For cohort data, we can also directly observe the probability of dying before age z + 1,

conditional on surviving to exact age z. This is given by

π(z, z + k) =
Dz

Sz
, (3)

where Dz is again the number of deaths betwen exact ages z and z + 1, and Sz is the

number of members of the cohort who survive to exact age z.

The continuous hazard µ(z) is related to the probability of death between exact ages z and

z + k through

π(z, z + k) = exp

(
−
∫ z+k

z
µ(x)dx

)
. (4)

For more details on hazard functions and the technical study of mortality in general, see

Preston et al. (2001) or Keyfitz et al. (2005).

2It may be helpful to recall that deaths between exact ages z and z + 1 are the same as deaths to people
whose age last birthday was z.
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3 Model

I assume that cohort deaths between ages z and z + 1 are distributed binomially; that is,

if Nz people from a cohort survive to exact age z, and all of the members of the cohort

face the same hazard µ(z), then

Dz ∼ Binomial(Nz, π(z, z + 1)), (5)

where Dz is the number of deaths between ages z and z+1, and π(z, z+1) is the probability

of dying between ages z and z+1. π(z, z+1) is derived from the hazard function according

to Equation 4 above. This is the same model used in Thatcher et al. (1998).

The likelihood for an observed sequence of deaths D = D1, D2, . . . and survivors to each

age, N = N1, N2, . . . is then

Pr(D|z, θ,N) =
∏
z

(
Nz

Dz

)
π(z, θ)Dz(1− π(z, θ))(Nz−Dz).

Taking logs and dropping terms that don’t vary with π(z, θ), I have

ll(D|z, θ,N) ∝
∑
z

[Dz log(π(z, θ)) + (Nz −Dz) log(1− π(z, θ))] . (6)

This is the likelihood I maximize, as a function of θ, in order to fit each hazard function

to the data.

Some previous work has adopted strategies for fitting mortality models that are based on

fitting curves to estimated central death rates using least squares or one of its weighted

or nonlinear variants. Although this approach has the advantage of being comparatively

simple, there are several reasons to prefer the maximum likelihood approach I have adopted

here. ? illustrates some of the problems that arise when using regression techniques to fit

parametric hazard models to central death rates, and concludes that maximum likelihood

estimation is the preferred technique. Pletcher (1999) also advocates for a maximum-

likelihood approach, and provides a review of some of its advantages. Wang et al. (1998)

illustrates some of the ways that central death rates can be misleading approximations of
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name parameters function sample reference

Gompertz α, β µ(z) = α exp(βz) Gompertz (1825)

Kannisto α, β µ(z) = α exp(βz)
1+exp(βz) Thatcher et al. (1998)

Weibull α, β µ(z) = αzβ Gavrilov and Gavrilova (1991)
Makeham α, β, γ µ(z) = γ + α exp(βz) Makeham (1860)

Log-Quadratic α, β, γ µ(z) = α+ βz + γz2 Coale and Kisker (1990); Wilmoth (1995)

Logistic α, β, γ, δ µ(z) = γ + α exp(βz)
1+δ exp(βz) Beard (1971); Perks (1932)

Lynch-Brown α, β, γ, δ µ(z) = α+ βarctan{γ(z − δ)} Lynch and Brown (2001)

Table 2: The functional forms for the hazard of death at advanced ages considered in this analysis.
In the functions listed, z is age, µ(z) is the force of mortality at age z. In compiling this list,
I am particularly indebted to the discussion of various functional forms, and their origins in the
literature, contained in Gavrilov and Gavrilova (1991) and Thatcher et al. (1998).

the underlying force of mortality at old ages.

Functional Forms

I consider several functional forms that have been employed to model mortality in adult and

advanced ages; these are listed in Table 2. Each of these forms has two or more parameters;

once the parameters are fixed, the shape of the hazard funtion is completely determined.

The technical appendix has a more detailed explanation of each function.

Model selection

I measure the goodness of fit of the various functional forms in several ways: first, I compute

the sum of squared errors in the estimated number of deaths for each country-sex-year;

that is, I compute

SSE =
∑
z

(
D̂z −Dz

)2
,

where k is the number of ages being fit. This quantity gives us a measurement of how close

each model’s predictions come to the observed numbers of deaths, in absolute terms.

Second, I compute Akaike’s Information Criterion (AIC) for each model and use it to

rank them within each country-sex-year; that is, I compute the AIC values within the

country-sex-year and rank them from best to worst. The AIC is essentially a penalized
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log-likelihood, where the penalty is a function of the number of parameters being estimated

in the model:

AIC = −2L + 2k, (7)

where L is the value of the maximized likelihood from Equation 6, and k is the number of

parameters being estimated in the model. Although the AIC has a simple form, it can be

justified as selecting the model minimizes the estimated Kullback-Leibler distance between

the distribution of data implied by the model and the one seen in the data (Burnham and

Anderson, 2004; Claeskens and Hjort, 2008). Absolute AIC values are not interpretable,

but the ordering of models given by their AIC values is. The ranking of models by their

AIC values, which I compute for each country-sex-year, is thus an indication of how well the

various functional forms trade off the number of parameters estimated with the accuracy

of their fit to the data. A tradeoff is necessary here because a functional form with too

many parameters is at risk of overfitting – that is, if I allow too many parameters to be

estimated, I risk capturing esoteric features of the dataset I happen to have observed. I

would not want to evaluate theories or produce forecasts based on a model that would

reproduce esoteric features of our data that would not be found in other settings.

Third, I compute the Bayesian Information Criterion (BIC) for each model, and also use it

to rank the models within each country-sex-year from best worst. Although the BIC has

a different theoretical justification from the AIC, it too has a simple form:

BIC = −2L + 2k log k, (8)

where L is the value of the maximized likelihood from Equation 6, and k is the number of

parameters being estimated in the model. In general, the BIC penalizes complex models

more heavily than the AIC. There is much discussion in the statistical literature about the

virtues of one of these information criteria over the other (Burnham and Anderson, 2004;

Claeskens and Hjort, 2008; Kass and Raftery, 1995). There are advantages to each, and

there is no conclusive reason to prefer one over the other; of course, the best situation is

when they both agree on the ordering of a set of models.
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4 Results

4.1 Two illustrative examples

As a sample of the results, Figure 1 shows the observed and fitted death rates from the seven

functional forms for one country-sex-cohort in the dataset: the Netherlands, females, 1885.

The blue circles show the observed central death rates, while the black curves show the

maximum likelihood fit of each functional form. The area of each blue circle is proportional

to the estimated person-years of exposure at each age. As we would expect, the observed

hazard, approximated by the central death rates, appears to increase with age. There is

some evidence of a plateau at the highest ages, though the greatly reduced size of the

cohort by that point means that it is difficult to be certain. For this cohort, it appears

as though some functional forms fit the observed death rates much better than others;

in particular, the four-parameter Lynch-Brown and Logistic functions are able to bend at

advanced ages to accommodate what might be a tapering in the hazard.

Measures of model fit for each hazard function shown in Figure 1 are reported in Table

3. The functional forms are ordered by the rank they attain using the AIC, where rank

1 is the model that fits the data the best and rank 10 is the model that fits the data

the worst. The table also shows the sum of squared errors in the estimated number of

deaths at each age (SSE), the difference between each model’s AIC and the minimum AIC

(∆AIC), and the difference between each model’s BIC and the minimum BIC (∆BIC). A

few things are remarkable about the results. First, comparing the AIC and BIC ranks with

the SSE shows that the AIC and BIC do not uniformly prefer models whose predictions

come closest to the observed deaths in absolute terms; they trade off between a model’s fit

and its complexity. Looking first at the SSE, we see that the four-parameter Lynch-Brown

model fit the data most accurately, as we would expect. However, that the three-parameter

Quadratic model achieves a fit that is very close to the Lynch-Brown model, but using only

three parameters. Indeed, we see that for this cohort, both the AIC and the BIC give the

Quadratic model the top ranking.

Figure 2 shows the same hazard functions fit to a second cohort, Swedish women born

in 1885. This case is somewhat different: here, the central death rates increase quite

smoothly with age, and all of the hazard functions except for the Weibull have more or

less the same shape; in particular, the two-parameter Gompertz and Kannisto models
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appear to have produced very similar fits to the four-parameter Logistic and Lynch-Brown

functions. Table 4 has the detailed measures of fit for this cohort. We see that, in this case,

the advantages of extra parameters are less apparent. The AIC ranks the two-parameter

Kannisto and Gompertz functional forms first and third; in second place is the three-

parameter Quadratic function. Also, unlike the example from the Netherlands we just

considered in Figure 1, for this cohort the AIC and the BIC do not completely agree on

the ordering of the models; in particular, the log-quadratic model was in second place

according to the AIC, but it is in third place according to BIC. This is an example of how

the BIC penalizes additional parameters more severely than the AIC. Nevertheless, the

rankings between the two methods are very similar to one another.

As a rule of thumb, Burnham and Anderson (2004) suggests that models with ∆AIC ≤ 2

have some support from the data and, similarly, Kass and Raftery (1995) suggests that the

evidence against models with ∆BIC ≤ 2 is weak, meaning the models themselves receive

support from the data. In the example from Belgium shown in Table 3, these rules of

thumb suggest that, while the log-quadratic model is the top performer, the data also

provide some support for the Lynch-Brown and, possibly, the Logistic models.

4.2 General results

Fits like the ones in Figures 1 and 2 were produced for each cohort in the dataset. In order

to draw conclusions about how well the functional forms fit the data in general, we will

now turn to aggregate measures of their performance across all of the country-sex-cohorts

in our data.

The final version of the paper, still underway, will have a detailed analysis of the overall

results shown in Figures 3, 4, and others.

5 Conclusion

Many studies of mortality at advanced ages, and related substantive topics, require that

the analyst choose a functional form to summarize the hazard of death by age. In these

studies, the analyst should employ principled criteria for selecting which functional form to

use. In particular, the criteria used to select a model should explicitly address the tension
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between fitting the observed data as well as possible, on the one hand, and minimizing

model complexity and, therefore, the risk of over-fitting, on the other.

In this preliminary analysis, I selected seven functional forms used in a wide spectrum of

studies, from forecasting to theoretical modeling, and demonstrated the use of powerful,

principled tools – Akaike’s Information Criterion and the Bayesian Information Criterion

– to select the most attractive model. Of the seven functional forms I considered, the

log-quadratic model had the strongest support from a cross-national, high-quality dataset

of deaths at advanced ages. Several other functional forms also performed well, but the

one most commonly recommended for use in the literature, the logistic, generally produced

only moderately good fits.

In many cases, there will be considerations beyond statistical ones which will limit the set of

candidate models that the analyst will consider. For example, a study that seeks to evaluate

the level of empirical support for theories of aging may only wish to consider functional

forms suggested by one of the theories being investigated. The procedure outlined above,

or a similar one, should still be employed on the reduced set of candidate models to decide

which ones enjoy the strongest empirical support.

The full version of the paper will explore the results presented above in more depth, with

a special focus on the implications the accuracy of the various hazard functions has for our

theoretical understanding of old-age mortality.
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Figure 1: The functional forms fit to the cohort data for females in the Netherlands, 1885.
The blue circles show the observed central death rates, while the black curves show the
maximum likelihood fit of each functional form. The area of each blue circle is proportional
to the estimated person-years of exposure at each age. There is some suggestion of a
tapering of the central death rates at advanced ages, but small numbers of surviving chort
members at those ages makes this difficult to determine graphically.For this cohort, some
functional forms fit the observed death rates much better than others; in particular, the
Quadratic and Lynch-Brown models appear to provide the most accurate fits. Measures
of model fit for each hazard function shown here are reported in Table 3.
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Figure 2: The functional forms fit to the cohort data for females in Sweden, 1885. The blue
circles show the observed central death rates, while the black curves show the maximum
likelihood fit of each functional form. The area of each blue circle is proportional to the
estimated person-years of exposure at each age. The AIC rankings and sum of squared
error (SSE) values for this country-sex-year are shown in Table 4. For this country-sex-year,
some functional forms fit the observed death rates much better than others. In particular,
the AIC suggests that the Kannisto and Quadratic models fit the data the best.
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Figure 3: Preliminary results summarized by functional form and fit measure. As explained
in the text, if ∆AIC/BIC < 2 then, as a rough rule of thumb, the model can be considered
to fit the data reasonably well. This plot shows the fraction of the cohorts studied for
which each functional form met that criterion; on the left-hand panel, we see the results
for AIC, and the right-hand side shows the results for BIC. Results for males are in red,
and females are in blue.
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Figure 4: Preliminary results for the fit measure ∆AIC, summarized by functional form
and country. This is the same data shown in the left-hand panel of Figure 3, now broken
down by country. Results for males are in red, and females are in blue. We can see that
there is considerable variation across countries in which hazards appear to fit best.


