
Hidden Markov Models: An Approach to

Sequence Analysis in Population Studies

Danilo Bolano

National Center of Competence in Research LIVES
Institute for Demographic and Life Course Studies

University of Geneva, Switzerland
Danilo.Bolano@unige.ch

PPA 2014 Annual Meeting

Abstract. In this paper we provide an extensive overview of
Hidden Markov models for longitudinal data. It is a stochastic
model used to describe the evolution of observable events that
depends on internal factors which are not directly observable.
We will illustrate the general version of the model and the esti-
mation procedures and the more interesting extensions for social
sciences like the inclusion of covariates, the Mixture Transition
Distribution model for high-order Markov Models, the Double
Chain Markov Model and so on. Some empirical examples from
life course perspective have been provided.
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1 Introduction

Over the last decades we have observed a widespread diffusion of retrospec-
tive population surveys and large scale panel studies like the Panel Study
of Income Dynamics (36 waves until 2013), the Health Retirement Study in
the US (20 waves), or administrative panel data like the Swiss Household
Panel (13 waves), the US National Longitudinal Survey and so on.

The increasing complexity of the data hence the need for specific ad-
vanced statistical methods in social sciences. In longitudinal life course
methodology, Billari (2001) distinguishes between two main approaches, the
most popular event-based approach (event history) and what it calls the
holistic approach. The first case is a generalization of the life table which
aims at discovering a casual relationship with the focus on one given event
and each individual is represented by a collection of time stamped events.
The holistic approach however mainly relies on sequence analysis and the
life trajectories are seen as a whole unit of interest.

Abbott, who introduced sequence analysis in social sciences in 1995,
makes a distinction between the approaches that consider the entire se-
quence as a whole unit and ”step-by-step” methods. In the former case
the objective is to identify typical patterns using measures of dissimilarity
or distance between individual trajectories (like the Optimal Matching dis-
tance). Markov chain models are instead classified as step-by-step method
where ”the central interest is a fairly deep and complex dependence of an
-interval-measured sequence upon its own past” (p.104 Abbott, 1995). A
Markovian process is an appropriate way to model a life course. Life trajec-
tories can be seen as the result of a stochastic process in which the sequence
of states (like employment or civic status, health condition etcetera) are
linked by transition probabilities to move from one to another with some
time dependences. Being in a certain state (e.g. condition) today, influence
the probability of being in an other state tomorrow. In other words, in the
Markovian framework life trajectories are seen as the result of a stochastic
process in which the probability of occurrence of a particular state, or event,
depends on its past.

Moreover as pointed out by Sutton (2006) the stochasticity plays a cen-
tral role in population and life course studies. Individual events are stochas-
tic by definitions, they are subject to random influences and unpredictable
a priori. For that reasons, we are not interested in the point estimation for
a particular individual but on the general tendency of the expected distri-
butions of individual outcomes. According to Sutton, ”the proper goal of
sociological research, [...], is not to make bad predictions about individuals,
but strong predictions about distributions” (Sutton, 2006, p.10). It is worth
to note in fact that Markovian models are distributional stochastic models
to the contrary of other well-known and widespread approaches that are es-
sentially point processes (e.g. the ARMA and ARIMA models in time series
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literature). Trying to predict the next value of a series, the advantage of
the point approach is that the model will provide a clear answer consisting
in one numerical value. The drawback is that in most cases the answer will
be either inaccurate or totally wrong. Furthermore, in population studies
the point prediction is quite useless. An adequate probabilistic model will
not provide a single value but will lead to a complete representation of the
possible futures through a (maybe multi-modal) distribution. In that sense,
the answer given by this approach will generally have a higher probability
to help taking the right decisions, because it shows all possibilities rather
than only a (probably) wrong one.

Despite this is a quite intuitive way to analyze a life course and the great
majority of social processes can be conducted to this framework Markovian
models are still only sparsely used in population studies. This is unfortunate,
since the current trend in social surveys is clearly to switch from cross-
sectional to longitudinal surveys, hence the need for advanced modeling
methods of such data.

According to Abbott (1995), the main reason for a limited uses in social
sciences of such methods is related to the underlying hypothesis of station-
ary, that is quite rare in reality, and the involving in the analysis of just
one previous time period. But Abbott in his discussion considers only the
simplest case of a Markovian process: a stationary process with one time
lag. It doest not take into account the opportunity to model non-stationary
Markov process as well as the introduction of higher order Markov chain.

In this article we will focus on Hidden Markov Model pointing out the
relevance of this approach for life course studies illustrating several exam-
ples. The Hidden Markov Model is a Markovian based model used when the
observed data are influenced by an underlying latent process. Like other
latent based models, HMM is particular suitable for analyzing life trajec-
tories. The evolution of many aspects of a life course depends on internal
factors or theoretical constructs that are not directly observable and can
evolve overtime. For instance, health trajectories of an aged person may
depend on his/her current unobserved level of frailty. HMM is a parameter-
driven model (Cox, 1981) in which the observed outcomes are independent
conditional on an underlying changing parameter process which follows a
Markov chain. And the distribution of the observed outcomes is determined
by the current state of the hidden process.

The use of hidden processes is also a way to relax the homogeneity as-
sumption in markovian processes trying to capture the complexity of social
behaviors and the latent variable may also have the role of accounting for
the unobserved heterogeneity between individuals and it can be used both
to explain the observed trajectories and for (probabilistic) clustering. We
will illustrate how simply we can switch from the simplest case to more in-
teresting extensions for social sciences like including covariates, modeling of
higher order Markov process and its approximation (Berchtold and Raftery,
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2002), Double Chain Markov Model (Berchtold, 2002) and so on. We will
also illustrate how for a given research problem, the state space can be de-
fined in different ways and different specifications of the model can be tested
in order to find the ones that ’best’ fit the data.

2 The general framework: Markovian models

A Markov chain is a stochastic process that models the serial dependence
between adjacent periods (like the rings of a chain). Let consider a random
variable Xt observed over time, t = 0, 1, 2, · · · , T 1. Markovian models are
used to model the probability of observing a certain modality of Xt given
the modalities observed in the previous periods.

In particular, in its traditional formulation, a Markov chain is a memo-
ryless process: the next modality, or states, depends only on the current one
and not on the previous sequence of states. This is called Markov property
and such models are also known as first-order Markov chain (Figure 1):

Pr(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . )

= Pr(Xt = xt|Xt−1 = xt−1) t = 1, ..., T
(2.1)

Figure 1: A graphical representation of a first order Markov chain

Xt0 Xt1 Xt2
... XT

This assumption is often too simplistic and it can be replaced by an
higher-order Markov process where the current state depends on multiple
previous states. For instance, for an hidden chain of order two:

Pr(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . )

= Pr(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2) t = 1, ..., T
(2.2)

We will discuss of high-order Markov chains and their approximation in
Section (6.3).

The probabilities Pr(Xt|Xt−1) (Equation 2.1) that govern the transitions
between states, called transition probability, are denoted by q(t) and they
are represented in matrix form by the transition matrix Q(t).

In literature using Markovian processes, the transition probabilities are
often considered independent of t. It means that at any moment of the series
the probability of switching from a given state to another is the same. In
this case we have a time-homogeneous markov process.

1In this article we will consider only discrete-time Markov chain
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For convenience, we consider Xt be a categorical variable taking value
in the finite set {1, 2, . . . , k}. In case of homogeneous Markov process the
transition matrix, Q(t), can be simply written as (k x k) matrix Q.

qij(t) = Pr(Xt = j|Xt−1 = i)

= Pr(Xt−1 = j|Xt−2 = i) = qij t = 1, ..., T i, j = 1, ..., k
(2.3)

The homogeneity assumption is justified in many applications but it has
been often criticized in social sciences where, in particular analyzing long
series like a life course of an individual, the hypothesis of time independence
may be not realistic. For instance, the probability of losing a job during a
working career: the transition probability between having a job and being
unemployed may differ if the person is at beginning of his career or at an
later stage of his working file. Even if this assumption is quite common used
in behavioral and social studies, different non-homogeneous models have
been developed. For instance, using Markov processes both at hidden and
visible level as in the Double Chain Markov Model (Berchtold, 2002) briefly
presented in Section (6.5)

Another relevant set of parameters that govern the transition probability
between states, is the prior or initial probabilities π:

πi = Pr(Xt0 = xt0) (2.4)

It indicates probability of having a given state i at first time point.

2.1 An example of how to use the transition probabilities
with homogeneous Markov process

A way to show the flexibility of the markovian models and possible applica-
tions to population studies, is looking at the transition matrix.

We can consider for example a first-order transition matrix with three
states. In the general formulation, the transition matrix is written as follows:

Q =

 q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3


Each cell represents the probability to move from a specific state to the

others. For instance, q1,2 is the probability to move from state 1 to state 2
and so on. The cells on the main diagonal represent the probability of being
in the same state for two consecutive periods. Being a series of probabilities
the sum for each row must be equal to one

∑k
j=1 qi,j = 1.

Suppose we want to analyze the changing in marital status into 2 con-
secutive year for a certain population. We have three possible modalities,
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”single” (S), ”married” (M) and ”divorced/widow” (D). The transition ma-
trix of a Markov chain of oder one, presented below, represents the ”marital
status transitions” between any two successive states2:

Xt

Xt−1 S M D
S 0.79 0.20 0.01

Q = M 0 0.95 0.05
D 0 0.30 0.70

Using a path diagram, the transition matrix can be represented as follows

Figure 2: A graphical representation of a first order transition matrix with
three states

S

M D

0.01
0.2

0.79

0

0.95

0.05

0.3 0.7

0

According to the research question and previous investigations, the re-
searcher may be interested to put some constraints. If we expect that the
different states are hierarchical, meaning that when a subject enters in a
state si, he can only stay in this state or go to a state with number sj > si.
This might be the case when the phenomenon under study evolves in time
with the age of the subjects or if we are analyzing ”linear” events. A good
example in health studies is hearing capabilities: young people are supposed
to have maximal capabilities, and then these capabilities will decline with
age. Such situations can be represented by the following matrix:

Q =

 q1,1 q1,2 q1,3
0 q2,2 q2,3
0 0 1


So, according to the specific research question, the research can define

the model in an appropriate manner. From a practical point of view, this is

2This is just an illustrative example with simulated data
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particularly easy. To impose the different constraints discussed above, it is
sufficient to set to zero the required parameters.

When we consider a higher order Markov chain, the transition matrix
can be more complex to represent including several elements set to zero
corresponding to transitions that cannot occur (the so-called structural zero).
For this reason it is possible to write the transition matrix in a compact way
called reduced form and denoted by RA. See Berchtold and Raftery (2002)
for more details. The reduced form of a transition matrix of a second order
Markov chain with three possible states is

Xt

Xt−2 Xt−1 1 2 3
1 1 q111 q112 q113
2 1 q211 q212 q213
3 1 q311 q312 q313

RA = 1 2 q121 q122 q123
2 2 q221 q222 q223
3 2 q321 q322 q323
1 3 q131 q132 q133
2 3 q231 q232 q233
3 3 q331 q332 q333

Before to analyze in details the Hidden Markov Models, we will briefly
recall some theoretical aspects of the finite mixture models. The HMM, in
fact, can be also considered as a generalization of the mixture model. As
we will show, in the mixture model the unobserved variables which control
the mixture component are assumed independent to each other. If there is a
dependency and its assumed to follow a Markov process, the mixture model
become an Hidden Markov Model.

3 Hidden Markov Models

The Hidden Markov Model (HMM) is a Markovian process used to describe
the evolution of observed events that are influenced by an underlying inter-
nal factor which is not directly observable that follows a Markov chain. Life
course data can be exactly represented by this framework. They are longitu-
dinal in their essence and life events of an individual can be represented by
the sequence of symbols of the variable of interest with an underlying hidden
construct. For instance, we can analyze the evolution of the health condition
of an individual taking into account the evolution of its unobserved level of
frailty.

Despite the limited use in demography and sociology, latent Markov
models are widely used in biosciences and in some fields of social sciences
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like behavioral and criminal studies. As in psychology to model learning
process; in economics and finance where they are knows as regime switch-
ing models; for EEG analysis; in behavioral sciences, in genetics, to study
biological sequences, DNA and protein modeling. In particular, there is a
extensive literature in speech recognition since Baum and Petrie (1966). The
application of HMM in several field is also due to its numerical and statis-
tical properties: availability of all moments (mean, variance and so on), the
likelihood is linear and easy to compute, it is possible to account for outliers
and it can be used for forecasting and probabilistic clustering.

An HMM consists of two stochastic processes: an invisible process of hid-
den states and a visible process of observable symbols. The hidden process
is assumed to follow a Markov chain and the observed sequence is consid-
ered as independent on the hidden states. In the hidden Markov model in
fact (see for example Rabiner, 1989), at each time the state of the latent
chain is unknown and there isn’t a full identification between the state of
the chain and the corresponding observed output 3. The successive outputs
of the observed variable are defined as conditionally independent because
they are linked only indirectly through a latent Markov chain and the re-
lationship between an unobserved state and the actual observations derives
form a probability distribution. On other words, the observations are in-
dependent conditional on some unobserved parameter process (Cox, 1981)
with distribution determined by the current state of the parameter process.
Figure 3 is a path diagram used to represent a first order Hidden Markov
chain.

Figure 3: A graphical representation of a first order Hidden Markov chain.
St is the hidden state at time t, Xi is the observed random variable5

St0 St1 St2 ... ST

Xt0 Xt1 Xt2
... XT

Then, the HMM consists of two main parts: a measurement model and
a dynamic one. The measurement part models the relationship between the

3Please notice the terminology used. We call ’symbol’ or ’event’ the single observation
and ’state’ the invisible factor underlying the observation. Differently from the terminol-
ogy used in classical sequence analysis where the event is time stamped and it defined by
state changes.

5By convention, circles represent unobserved latent variable. The squares the observed
variable
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states of the hidden chain and the observations. The dynamic model, how-
ever, explains the dynamics (i.e. the transitions) between states overtime.
If the states represent the construct of interest, an unobserved entity, the
transition dynamics represent the changes in the construct.

Formally, a discrete time HMM consists of five elements:

1. a set S(t) of hidden states si, i = {1, . . . , k}

2. a set X(t) of observed symbols

3. a matrix Q(t) of transition probabilities to move from one state to
another at each time point t, t = 0, . . . , T . It is the analogous of the
transition matrix presented in Section (2.1) for a Markov chain

4. matrix B of probabilities pi(x) of having the observation x being in
the hidden state i

5. a vector π of initial probabilities

The first three points mean that the unobserved factor is a categorical
variable which have k possible levels or states (Point 1). X(t) is a random
observed variable. And we have a certain probability qij(t) of moving to
state i to state j at time t (Point 3).

The simplest HMM can be summarized as follows:

Pr(St = i|St−1
0 = st−1

0 ) = Pr(St = i|St−1 = j) = qij t = 1, ..., T (3.1a)

Pr(Xt = xt|Xt−1
0 = xt−1

0 , St
0 = st0) = Pr(Xt = xt|St = i) = pi(xt) s = 1, ..., k

(3.1b)

Equation (3.1a) represents the latent part of the model where an un-
observed variable St follows a Markov property. So, the current state St
depends only on the previous state St−1 and not on the earlier periods.
The second equation however, refers to the measurement part also known as
state-dependent process. At time t when the hidden state is known (St = st),
the probability distribution of Xt depends only on the current latent state
and not on previous observations or on the previous states. For this reason,
the observed process is called conditionally independent.

When the observed variableXt is a categorical variable, pi(x) represented
in Equation (3.1b) is the probability mass function of Xt if the latent chain
is in state i in time t. The continuous case it is similar but we have to
consider pi(x) as the probability density function of Xt when we have the
state i at time t.

The k distributions pi are called state dependent distributions of the
model and they are represented in the vector π.

All set of parameters presented in this section are usually presented in the
compact form v = (Q,B, π). Graphically, the parameters of a HMM with
hidden variable Si with three possible states i = {1, 2, 3} and an observed
variable Xt, t = {1, 2, 3, 4} is

9



Figure 4: A graphical representation of HMM parameters: 3 states

S1 S2 S3

Transition probabilities

qij = Pr(St = j|St−1 = i)

X1 X2 X3 X4

Response probability

pi(xt) = Pr(Xt = xt|St = i)

π1 π2 π3

Initial parameters πi = Pr(St1 = i)

q12

q21

q23

q32

p11
p34

3.1 Marginal distributions and the likelihood

In the section, we will derive the distribution of Xt with an homogeneous
Markov chain. For convenience, we will derive in case of discrete values but
for continuous variables the derivation is similar.

Let Xt a discrete variable with t = 1, . . . , T , defining ui(t) = Pr(St = i)
the probability of being in state i at time t,

Pr(Xt = xt) =
k∑

j=1

Pr(St = i)Pr(Xt = xt|St = j)

=
k∑

i=1

ui(t)pj(xt)

(3.2)

This equation is straightforward from Figure 3.
The probability of a given observation x depends on the state of the

hidden process. So, to calculate this probability we have to multiply the
probability of being in a certain state j for the conditional probability of
that particular state has determined the observation x (Equation 3.1b).
Then, we have to sum over the all possible k hidden states.

Suppose as in the previous example to consider a latent process with
three possible latent levels of frailty, S = {1, 2, 3} and X the self reported
health using a Likert Scale with five modalities (”Very bad”, ”Bad”, ”Av-
erage”, ”Good”, ”Very good”). The probability of observing: ”be in good
health” (G) can be calculated as follows
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Pr(X = G) =

= Pr(S = 1)Pr(X = G|S = 1)+

+ Pr(S = 2)Pr(X = G|S = 2) + Pr(S = 3)Pr(X = G|S = 3)

(3.3)

Equation(3.2) can be easily extended to a sequence of observations
{x0, x1, . . . , T}. Considering that6

Pr(Xt, Xt+m, St, St+m) = Pr(St)Pr(Xt|St)Pr(St+m|St)Pr(Xt+m|St+m) m = 1, . . . , T−t
(3.4)

And then using also Equation (3.1b),

Pr(Xt = xt, Xt+m = xt+m) =

=

k∑
i=1

k∑
j=1

Pr(Xt = xt, Xt+m = xt+m, St = i, St+m = j)

=

k∑
i=1

k∑
j=1

Pr(St = i)pi(xt)Pr(Xt+m|St = i)pj(xt+m)

=

k∑
i=1

k∑
j=1

ui(t)pi(xt)qij(m)pj(xt+m) m = 1, . . . , T − t

(3.5)

In matrix form Equation(3.5) becomes

Pr(Xt = xt, Xt+m = xt+m) = u(t)P(xt)Q
kP(xt+m)1’ (3.6)

Where u(t) is a vector of the k probabilities ui(t), P(t) a (k X k)diagonal
matrix with diagonal elements the state-dependent probability (density)
functions pi(xt). Q is the transition probability matrix. See Zucchini and
MacDonald (2009) for the proofs.

Then, the likelihood LT of observing {x0, . . . , xT } with a k-states HMM
and initial distribution π can be written as follows

LT = Pr(XT
0 = xT0 ) =

k∑
s=1

Pr(XT
0 = xT0 , S

T
0 = sT0 )

= πP(x1)QP(x2)Q . . .QP(xT )1’

(3.7)

6For convenience we use a compact notation.
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4 Computational methods: The estimation proce-
dure

In practical situations, given the flexible but complex structure of the HMM,
there are three fundamental issues to address:

• Evaluation problem. How well a given model describe the observed
sequence of data? Or in other words, given a sequence of observa-
tion XT

0 = {x0, x1, x2, . . . , xT } and the model v, how do we efficiently
compute L(XT

0 |v).

• Optimal state sequence. Given the data and a model, how can we
search for the optimal sequence of hidden states?

• Parameter estimation. How to optimize the model parameters
{π,Q} given the data.

The solutions of these problem are well known in literature and they will
briefly shown in the final version of this paper.

5 Model selection and assessment

Because of its flexibility, it is possible to fit a large number of different models
just increasing the number of states in order to find the model that best fit
of the data. As shown before, the EM algorithm estimates the parameters
of a full specified model. It means that it is up to the researcher to set or to
identify the most relevant number of states comparing a series of model. For
instance, if we are completely data driven with a series of 1,000 observations
we might compute and compare 1,000 different first-order HMM. And if we
consider that we can also include higher order dependence, then, the number
of alternative models easily explodes. In the paper Bolano and Berchtold
(2013) we have proposed a hierarchical model selection procedure for HMM
with continuous variables.

A classical approach in model assessment like the likelihood ratio, it
is not applicable. The models are not nested and the distribution of the
likelihood ratio is unknown and it is generally not asymptotically distributed
as a chi-square McLachlan and Peel (2000). Alternatives for non-nested
models includes the Akaike Information Criterion (AIC Akaike, 1974), the
Bayesian Information Criterion (BIC Schwarz, 1978) and different variants
and corrections of them. For a given model M :

AIC = −2logLM + 2pM

BIC = −2logLM + pM log(N)
(5.1)
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Where LM is the likelihood of the model M , pM the number of freely
estimated parameters, N the number of observations used in fitting the
model. So the difference between the two criteria lies in the penalized terms
(the second term in Equations (5.1)). In literature two variants have been
proposed: the adjusted AIC (A-AIC) and the adjusted BIC (A-BIC). The
adjustment refers to the number of parameters to include in pM . The idea
is not to count the parameters that have been estimated to be zero due to
they not explain any part of the data. Some scholars show that in mixture
modeling AIC tends to identify too many states and on the other hand,
in same case BIC seems to underestimate the true number of components.
Nevertheless, the BIC is still the standard procedure in model comparison
in mixture modeling and HMM literature.

However, it is important to notice that in practice the selection of the
best model based only on formal criteria like the BIC or likelihood ratio
test may lead to model that might be not interesting or complex to use and
analyze. Often, increasing the number of states or components may lead to
an improve in the goodness of fit of the model bringing to the inclusion of
negligible and rare states. Thus, the choice of the best model specification
cannot be completely driven by formal mathematical procedure but it has to
depend on the specific research question and on the type of data available.

6 Extensions of Hidden Markov Model

In its traditional formulation, Markovian processes have been used to de-
scribe univariate time series. So for analyzing a single sequence of a random
variable. But, given the flexibility of the HMM, several modification and
generalization have been introduced. In the this section we will discuss some
interesting extensions for more complex types of observation. As modeling
multivariate series, including covariates (these two extensions are particu-
larly relevant in social sciences with the diffusion of panel data), how to
consider higher-order Markov chain and a Markovian model-called Double
Chain Markov model to include serial dependence directly in the observed
sequence.

6.1 Multivariate series

One generalization of HMM is to consider multivariate time series. In many
applications, especially in human science, researchers does not face a single
series of observation but longitudinal, when multiple individuals are followed
overtime and then the data consist in a series of individual sequences.

Considering N time series {X1,t, X2,t, . . . , Xn,t}, we assume that Xi,t,
t = 0, . . . , T and i = 1, . . . , N are mutually independent conditionally on the
hidden state of individual i at time t, Si,t. But, as pointed out by Zucchini
and MacDonald (2009) it does not mean that the individual component
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series are serially independent or that the series are mutually independent.
Serial dependence and cross-dependence between series are in fact induced
by the hidden Markov process.

The conditional independence assumption in case of longitudinal data
becomes:

f(Xi,t = xi,t|Xi,0 = xi,0, . . . , Xi,t−1 = xi,t−1, Si,0 = si,0, . . . , Si,t = si,t) =

= f(Xi,t = xi,t|Si,t = si,t)

(6.1)

Then, considering the Markov property and the independence assump-
tion (6.1), the likelihood function for longitudinal data can be derived as the
product of the likelihood of the N independent sequences. So, the estimation
procedures presented are still valid.

6.2 Using covariates

Analyzing longitudinal data, it is natural to study the evolution of the key
variable according to the effect of external factors. In HMM individual co-
variates may be included both in the latent process and in the measurement
model. They can be time varying (e.g. age, income, parental status) or fixed
in time (e.g gender, date of birth), categorical or continuous.

In Figure (5) we consider a set of l covariates C = {C1, . . . , Cl} which
may effect the latent process.

Figure 5: Graphical representation of a first order Hidden Markov chain
with a set of covariates C on the hidden level

St0 St1 St2 ... ST

Xt0 Xt1 Xt2
... XT

C

6.3 High Order Homogeneous Markov Chain and the MTD

In the first order (Hidden) Markov chain, the state of a model at time t
depends only on the state of the model at time t − 1. No prior states are
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relevant. But in many situations, the present observation depends not only
on the first lag but on the last f observations (f > 1). So, let St a random
variable who follow an homogeneous Markov chain of order f we have,

P (St = st|St−1 = st−1, St−2 = st−2, . . . , St0 = st0) =

P (St = st|St−1 = st−1, . . . , St−f = st−f )
(6.2)

Figure 6: A second order Markov Chain

St0 St1 St3 St4

Unfortunately, the number of independent parameters increases expo-
nentially with the order f and it becomes complicated to estimated them
in an efficient way or even we might have problem of identifiability if the
amount of data is small.

Be k the number of values taken by the variable S, the total number
of parameters to estimate in a Markov chain of order f is equal to kf (k −
1). For example, if S is a discrete variable with three categories in a first
order Markov chain we have 6 independent parameters, for a second order
Markov chain we have 18 independent parameters, for f = 3, the number of
parameters already exposes to 54.

A parsimonious way to approximate high-order Markov chains is the
Mixture Transition Distribution Model (MTD). In the MTD, introduced
by Raftery (1985), the idea is to consider separately the effect of each lag
instead of considering the effect of the f previous states on the current one.
The conditional probability becomes

P (St = st|St−1 = st−1, . . . , St−f = st−f ) =

f∑
g=1

λgqigi0 (6.3)

where λg is the weight parameter associated to lag g and qigi0 are the prob-
abilities in a (k x k) transition matrix Q. Each row of Q represents a
probability distribution and therefore sums to one. So, we have only one
transition matrix Q with k(k − 1) independent parameters and a vector of
lag parameters. Therefore, the total number of independent parameters to
estimate becomes k(k−1)+(f−1). For instance, increasing the time depen-
dence of one unit, we will have only one additional parameter to estimate.

Using the example mentioned before, in a third order Markov chain with
three states, instead of having 54 independent parameter, with MTD will
have only 8 parameters to estimate. Table 1 show the number of independent
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parameters in case of (hidden) MM and MTD for different dependence orders
and values taken by the random variable S.

Table 1: Number of independent parameters to estimate

Number of Order (Hidden) Markov MTD
states, k f Chain

3 1 6 6
3 2 18 7
3 3 54 8
3 4 162 9

5 1 20 20
5 2 100 21
5 3 500 22
5 4 2,500 23

10 1 90 90
10 2 900 91
10 3 9,000 92
10 4 90,000 93

For a complete review of MTD model with several comparison and ex-
tensions and applications see Berchtold and Raftery (2002)

6.4 Using HMM for probabilistic clustering

Another interesting feature of the HMM is to use the transition probabilities
to provide probabilistic clusters. Even if there are equivalent to the Hid-
den Markov Model, in literature these models are known as Latent Markov
Models and there are considered as an extension of latent class models but
with repeated measures. The goal of these models is to classify individuals
into a finite number of homogeneous distinct groups.

A well known way to proceed is to consider a finite mixture models and
to define the transition matrix Q as a (block) diagonal matrix. So, each
state is full absorbing defining the membership to a single group. The idea
is to consider the sample as drawn by an heterogeneous population where
each sub-population is described by a component of the mixture. In other
words, each group is represented by a single state of the transition matrix
and once a person enter in a particular state (”become member of a group”),
he cannot leave that group.
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For a three states HMM, the transition matrix is then written as follows

Q =

 1 0 0
0 1 0
0 0 1


Using such constraint in a Double Chain Markov Model (Section6.5)

allows to account for time dependence on the observed variable and, at
same, to determine a probabilistic clustering using the hidden states.

Another easy way, it to identify the latent states as different subpopula-
tions and without including any constraints on the transition matrix, allow
the individuals to move between latent classes at each time point. As in
general framework for the mixture model, a critical issue is to find the cor-
rect number of classes. Procedure based on BIC or other criteria are widely
discussed in literature.

See Bicego et al. (2003) for more sophisticated sequential data clustering
methods using similarity based approaches.

6.5 Other extensions

A way to combine an HMM and a visible Markov chain governing the rela-
tions between observations of the a key variable is the Double Chain Markov
Model (DCMM, Berchtold, 2002). It has been designed for the modeling of
non-homogeneous time-series and the main idea is to decompose the time-
series into a set of transition matrices as many as the number of the hidden
states. At each time point, a specific transition matrix is selected according
to a full homogeneous Markov chain (Figure 7). Then, different transition
matrices can be used to model different portions of the observed data.

Figure 7: Path diagram of a Double Chain Markov Model of order one

Xt0 Xt1 Xt2
... XT

St1 St2 ... ST

As in other path models like the SEM, also for Hidden Markov Model
is quite simple to extend and ”adjust” the model according to the specific
research question. It is possible to introduce cross lagged dependence (Fig-
ure 8) or autoregressive component of oder two (Figure 9) and so on. But
the way to fit the model and interpret the result presented in the previous
sections remain the same.
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Figure 8: Cross lagged HMM

St0 St1 St2 ... ST

Xt0 Xt1 Xt2
... XT

Figure 9: Double Chain MM with AR(2)

St0 St1 St2 ... ST

Xt0 Xt1 Xt2
... XT

Another case in which the HMMs are used is to account for measurement
errors. If our variable of interest derives from different factors, for instance
the vulnerability of a certain group measured by a series of different indi-
cators, the dependence between these factors can be simplify introduction
an unobserved variable. In such way each state will represent the different
modalities of our construct of interest.

6.6 An Hidden Markov Model for count data

For convenience in the notation, in the paper we often refer to the observed
variable as a categorical one. But HMM can be applied to count data too.
In particular Hidden Markov models are particularly well suited for the
analysis of data switching between several regimes. Such models can be used
to represent and analyze complex time-series in presence of overdispersion
like for psychometric or biometrical studies, financial series.

Another very popular and efficient approach is the use of mixture models
that are able to describe very complex distributions which do not correspond
to any specific statistical family. The general principle of all MTD-like
models is to combine different Gaussian distributions (called components)
through a mixture model where the mean of each distribution is a function
of the past observed process.

Both the mixture transition distribution models and the hidden Markov
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models include a latent and a visible part and they can include covariates
and high-order time dependencies at the visible and hidden level. So we
may consider the two approaches as one unique method.

In Bolano and Berchtold (2013) we have introduced a generalization of
an HMM. This model, called Hidden Mixture Transition Distribution, is
a flexible time dependence mixture mode to represent continuous variables
accounting for the observed heterogeneity.

The model can be estimated using simultaneously as many independent
sequences of observations as wanted. Each sequence will typically corre-
spond to the observation of a separate subject. On the other hand, each
hidden state and its associated visible component can be interpreted as a
behavior of the subjects under investigation. Multiplying the number of
components, we allow the subjects to follow many different behaviors in
order to capture both the complexity of the population behavior and the
evolution over time of each individual.

The HMTD is a two level model: a visible and observed level are consid-
ered and it is useful to model longitudinal data switching between alternative
typologies/regimes. The observed heterogeneity is assumed to be induced
by one or several latent factors and each level of these factors is related to a
different component of the observed process. Individual trajectories are seen
as a (weighted) mixture of different patters and the relation between suc-
cessive components (that represent different states of the hidden variable)
is governed by a Markovian latent transition process.

7 Discussion

In this paper we have provided an overview of the Hidden Markov Model.
It is a stochastic model used to describe the evolution of observable events
that depends on internal factors which are not directly observable.

Modeling observations in these two levels, one visible and a latent one,
can be very useful in life course studies, since many aspects of a life trajec-
tory can be represented by this structure. For instance, vulnerability can be
considered as a latent variable revealed through observable atypical behav-
iors, aspects and characteristics. Using HMM we can explore the changes
in unobserved and difficult-to-measure aspects and identify the probability
of moving from one latent state to another analyzing the vulnerability dy-
namics of a certain population. Using a latent class approach, we also can
recognize similar patterns, directly observable or latent, among the initial
population in order to identifying which individual characteristic influence
the membership of a specific subgroup.

Hidden Markov Models can be applied to a wide range of longitudinal
data, from univariate time series to multivariate and panel data. It can
be used to describe the evolution of a process in continuous time or with
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discrete-valued time series. It can be applied to categorical or continuous
observations, bounded or unbounded counts and so on. It is an extremely
flexible model that can be adapted for a wide range of applications. HM
models have been extensively applied in the last decade in many areas like
speech recognition, behavior analysis, climatology, finance. In sociology and
in life course studies, this approach is still sparsely used but we expect that
the importance of HMM in social sciences as well as the rage of application
will grow further.

This article is intended to illustrate the basic aspects and the powerful
flexibility of hidden markov models both formally and proving empirical ap-
plications in life course studies. Staring from its traditional formulation, we
present several extensions in longitudinal settings as Double Chain Markov
model to relax the homogeneity assumption, the introduction of covariates in
order to capture the effect of external factors on the transition probabilities,
high-order Markov chain to include in the model higher time dependence.
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