
A Mixture Model for Nuptiality Data with
Long-Term Survivors�

Paraskevi Peristera and Gebrenegus Ghilagaber

Department of Statistics, Stockholm University, Sweden

1 Introduction and Literature Review

The tacit assumption in the analysis of duration data with censored obser-
vations is that censoring time is independent of event time. This, in turn,
implies that the individuals who have not experienced the event of interest
by the end of the study are a representative random sample of the popu-
lation under investigation and do not di¤er in any systematic manner from
those who have experienced the event. While this strong assumption may be
valid for some types of events it is often violated in many other situations.
For instance, in the analysis of data on family formation, individuals with a
tendency to remain single over long periods (including their entire life) may
be overrepresented among the censored. observations. Such individuals are
known as long-term survivors and implementing standard survival techniques
on data with long-term survivors may distort the results of the analysis.
The main approach for handling long-term survivors for failure time data

is to suppose that there exist a latent subpopulation which can be considered
a priori to have a zero risk of experiencing the event throughout the observa-
tion period. Empirical evidence of the existence of a surviving fraction would
be heavy censoring at the end of the study period.
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Mixture models that allow joint estimation of the probability of long-
term survivorship and the timing of event occurrence are proposed in the
literature (Maller and Zhou, 1996; Li and Choe, 1997; Brown and Ibrahim,
2003; Steele,2003; Shao and Zhou, 2004;Muthen and Masyn; 2005; Yu and
Peng, 2008) for handling data with long-term survivors. Usually a logistic
regression model for the event occurrence is combined with an event history
model for event timing conditional on event occurrence. The advantage of
mixture models is that they allow separate estimation of the e¤ects of covari-
ates on long-term survivorship and on event timing. This is important since
the factors a¤ecting the two processes may di¤er and factors that a¤ect both
processes may operate in di¤erent ways

2 Mixture Modeling

2.1 The Model

The mixture model assumes two latent subpopulations: one population with
zero risk of experiencing the event (long-term survivors) and the other pop-
ulation with a non-zero risk (susceptible group) (Maller and Zhou, 1996).
De�ne a binary variable Y , where Y = 0 indicates that an individual will
never experience the event (i.e. will be a long-term survivor); Y = 1 indicates
that the individual will eventually experience the event (susceptible individ-
ual i.e. not long-term survivor). Let T be a random variable that denotes
the failure of interest, de�ned only when Y = 1. Then let f(t), h(t)be the
conditional probability density and hazard distribution functions of T , given
that the event occurs (Y = 1). Also, let g(y) is the unconditional probability
function. We further assume a non-zero survival fraction given a covariate
vector z

p(z) = P (Y = 1; z)

The survival function that corresponds to g(t) can be expressed in terms of
the mixture of susceptible and non-susceptible individuals as follows:

Sg(t=x; z) = (1� p(z))SL(t) + p(z)Sf (t)

where SL(t)and Sf (t) = S(t=Y = 1;x) = Pr(T > t=Y = 1;x) refer to the
distributions of long-term survivors and susceptible respectively. Since those
that are long-term survivors will never experience the event of interest then
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when the limt� > 1 : SL(t) = 1.Thus the unconditional survival function
becomes

Sg(t=x; z) = 1� p(z) + p(z)S(t=Y = 1;x)
The e¤ect of the covariates z on the probability of being susceptible p(z)

can be modeled through a binary logistic regression model

p(z) = P (Y = 1=z) =
exp(bz)

1 + exp(bz)

The conditional latency distribution Sf (t) = S(t=Y = 1; x) can take the
form of parametric or semiparametric distributions. Among the parametric
models exponential, weibull, gompertz are commonly used to model survival
data.

2.2 The Likelihood

Suppose that the data are of the form (ti; �i;xi; zi) where �i is the censoring
indicator with �i = 1 if ti is uncensored and �i = 0 otherwise, xi, zi correspond
the set of covariates for the incidence and survival part of the model.The
likelihood contribution for individual i is:

pif(ti=Y = 1;xi) for �i = 1

&

(1� pi)S(ti=Y = 1;xi) for �i = 0

The observed marginal likelihood is then given by:

L(b) =
Y
i

[pi(zi)f(ti=Y = 1;xi)]
�i [(1� pi(zi)) + pi(zi)S(ti=Y = 1;xi)]1��i

The parameters of the model as well as the fraction of long-term survivors
can be obtained through maximization of the marginal likelihood.

2.3 Scope of Analysis and Expected Outcomes

In this work we use a mixture model where parameters of a binary logistic
regression model (for the conditional probability of long-term survivor given
censoring) are jointly estimated with those of a continuous intensity model for
family formation. The advantage of this model is that it allows simultaneous
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estimation of two sets of e¤ects of covariates: one for the probability of
the event and another for the timing of the event. The model also allows
for the incorporation of a frailty-term for unobserved heterogeneity. We
illustrate this model in the analysis of nuptiality data. We aim to provide
a comparative analysis between standard survival models, mixture models
that account for long-term survivors and mixture models with frailty terms.
We are interested in examining how the e¤ect of di¤erent covariates changes
for the di¤erent models and especially in the case of the mixture model.
Preliminary results show that failure to account for long-term survivors may
yield misleading results that could plague the purpose of the analysis.
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