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Abstract 

Biomarkers are increasingly being included in surveys used by population 

researchers and prominent among these biomarkers are blood pressure readings.  To help 

address random fluctuations in blood pressure, it has long been known that multiple 

readings of blood pressure are preferable to a single reading. In this study, we use a 

Structural Equation Modeling approach to evaluate measurement error in blood pressure 

readings at three different time points spanning six years among adolescents and young 

adults who were part of a longitudinal epidemiological study based in Cebu, Philippines. 

Our results indicate that there are no systematic differences in the measurement 

properties of the first, second, and third readings for both females and males across each of 

the three waves of data. There are, however, differences in the measurement properties 

across waves and for females and males. Finally, we find that simple linear combinations of 
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the blood pressure readings have quite high validity, and therefore do a good job of 

reflecting the underlying “true” blood pressure. 

 
 
Introduction 
 Biomarkers are increasingly being included in surveys used by population 

researchers.  Prominent among these biomarkers are blood pressure readings.  This is 

done because high blood pressure is related to cardiovascular disease, a leading cause of 

death around the world, strokes, and kidney disease. As population researchers 

incorporate blood pressure readings into their analyses it is important to understand the 

quality of the measurements.  

To help address random fluctuations in blood pressure, it has long been known that 

multiple readings of blood pressure are preferable to a single reading (Souchek, Stamler, 

Dyer, Oglesby, and Lepper 1979). In addition to random fluctuations, however, numerous 

studies have demonstrated that blood pressure readings are influenced by a number 

contextual factors, including the device used for measurement (Bassein, Borghi, Costa, 

Strocchi, Mussi, and Ambrosioni 1985; Niyonsenga, Vanasse, Courteau, and Cloutier 2008), 

the time of year (Andersen, Henriksen, Jense, and The Copenhagen City Heart Study Group 

2002), and potential sources of stress such as the “white coat” effect or the timing of 

measurement (Bodegard, Erikssen, Sandvik, Kjeldsen, Bhørnhold, and Erikssen 2002) 

among others. Furthermore, blood pressure readings are subject to recording errors with 

digit preference the most frequently studied source (Bennett 1994; Hessel 1986; Keary, 

Atkins, and O'Brien 1998; Niyonsenga, Vanasse, Courteau, and Cloutier 2008). 

 To evaluate measurement error in readings of blood pressure, Batista-Foguet, 

Coenders, and Ferragud (2001) adopted a structural equation modeling framework and 
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used multiple group multi-trait multi-method (MTMM) models to decompose the variance 

in readings of blood pressure into components representing “true” blood pressure, random 

fluctuations, and systematic error. Using data from elderly patients in Spain they found that 

the second blood pressure reading had the best relationship with “true” blood pressure and 

that a linear combination of the readings using factor score weights had better 

measurement properties than a simple average of the readings. 

 We adopt a similar analytic approach as Batista-Foguet et al. (2001) to evaluate 

measurement error in blood pressure readings at three different time points spanning six 

years among adolescents and young adults who were part of a longitudinal epidemiological 

study based in Cebu, Philippines. Our analysis is guided by four research questions 

concerning measurement error. First, are there any systematic differences in the 

measurement properties of the first, second, or third readings done at approximately the 

same time? Second, are there any differences in measurement properties of the three 

readings across the three waves of data? Third, are there any differences in measurement 

properties of the three readings across females and males? Finally, are there any 

differences in the measurement properties of a simple average of the three readings as 

compared with a linear combination based on factor scores? 

 To our knowledge, this is the first study to evaluate measurement error in readings 

of blood pressure (a) among adolescents and young adults, (b) with a sample of 

respondents from a developing country, and (c) across three time waves of data. Given the 

centrality of blood pressure as a measure of adult health, this study will contribute to our 

understanding of the measurement properties of blood pressure readings across a range of 

contexts and how best to operationalize blood pressure for analysis. 
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Data 

 The data for our analysis are drawn from the Cebu Longitudinal Health and 

Nutrition Survey (CLHNS) (Adair, Popkin, Akin, Guilkey, Gultiano, Borja, Perez, Kuzawa, 

McDade, and Hindin 2011). The CLHNS began with an initial survey in 1983-1984 of 3,327 

expectant mothers in 33 randomly selected communities located in the Cebu, Philippines 

metropolitan area. The mothers and their children were periodically resurveyed to capture 

the process of infant and adolescent development as well as changing family circumstances. 

Beginning in the 1998-1999 wave and continuing in the 2002 and 2005 waves of the 

survey blood pressure measurements of the adolescents were collected. During these 

waves the adolescents were respectively aged 14 to 16, 16 to 18, and 20 to 22 in the final 

wave. 

 A standard procedure was used for obtaining blood pressure measurements from 

each of the respondents. Respondents were measured after a 10 minute seated rest, during 

home visits. Trained interviewers using a mercury sphygmomanometer, and appropriate 

cuff sizes took three measurements.  

  

Analysis Sample 

 The sample for this analysis consists of 2,127 cases (1,015 women and 1,112 men) 

with blood pressure readings for at least one of the three waves of data. Over 80 percent of 

the cases have blood pressure readings for all three waves. The sample sizes for the 

individual waves range from 2,087 at wave 1 to 1,966 at wave 2 and 1,812 at wave 3. 
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 Blood Pressure Readings 

 Figures 1 and 2 provide box plots for the three readings of systolic and diastolic 

blood pressure across the three waves of data separately for females and males. For 

systolic blood pressure among both females and males we see similar distributions across 

the three readings within each wave. Across waves mean systolic blood pressure appears 

to be slightly increasing for females and males and the variance is increasing for females. 

For diastolic blood pressure we also observe similar distributions across readings for 

females and males within waves. Once again, across waves mean diastolic blood pressure 

appears to be slightly increasing for females and males, particularly by wave 3, and the 

variance appears to be increasing for females.  Blood pressure increases with height as well 

as weight in children and adolescents, and would therefore be expected to increase over 

the time period covered by the study. 

 

-- Figures 1 and 2 about here -- 

 

 Analytic Approach 

 Following Batista-Foguet et al. (2001), we rely on a structural equation modeling 

approach to address our research questions concerning the measurement properties of the 

blood pressure readings. For our first analysis we specify separate multi-trait multi-

method (MTMM) models for females and males and for each wave of blood pressure 

readings. The two traits in our MTMM models are systolic and diastolic blood pressure. The 

three methods in our MTMM models are the three readings.  These first, second, and third 
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method factors permit us to capture systematic error that covers over the systolic and 

diastolic readings for each measurement occasion.   These models allow us to decompose 

the variance in each of the individual blood pressure readings into components attributable 

to “true” systolic or diastolic blood pressure, systematic error associated with each reading 

occasion, and random error (sometimes referred to as unique factor) associated with each 

individual reading. 

 Our MTMM models can be written as  

 

                                 , (1) 

 

where x is the blood pressure reading for trait k (systolic or diastolic blood pressure) with 

method j (reading 1, 2, or 3) on the ith subject. The      are the latent trait variables 

representing “true” systolic and diastolic blood pressure. The factor loadings,     , give the 

effects of actual underlying blood pressure on the readings. The      are the latent method 

variables representing the shared variance for the three reading occasions and the factor 

loadings,     , give the effects of the reading occasions on the readings. The     are 

intercepts that capture any systematic differences in the means of the blood pressure 

readings. The      are the random error terms for the blood pressure readings that we 

assume have means of zero and are uncorrelated with the   . 

 To ensure the model is identified we constrain the factor loadings for the methods 

factors to equal 1 and we scale the trait factors to the second reading of systolic and 

diastolic blood pressure respectively by setting these factor loadings equal to 1. We chose 

the second reading of blood pressure because it had been found to be more reliable than 
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the first or third readings (Batista-Foguet, Coenders, and Ferragud 2001). Finally, we 

constrain the method factors to be uncorrelated with each other and with the latent traits. 

This set of constraints is consistent with a MTMM model where the number of traits does 

not equal the number of methods (Bollen and Paxton 1998). In the following analyses, we 

refer to this specification as the initial model.  

 We impose additional constraints to test for relative bias across the readings. The 

first set of additional constraints involves setting the remaining factor loadings for systolic 

and diastolic blood pressure to equal 1. The second additional set of constraints involves 

setting the intercepts,    , equal to 0. These restrictions imply that the intercepts and 

slopes relating the blood pressure reading to the latent blood pressure are same across the 

three occasions.  They represent restricted versions of the initial model and can thus be 

assessed with chi-square difference tests as well as changes in the BIC. 

 Our second research question concerns testing for measurement invariance across 

waves. To conduct these tests we specify a confirmatory factor analysis (CFA) model that 

combines the preferred MTMM models from the first analysis from each of the waves 

separately for females and males. In the CFA model we allow all of the latent trait variables 

for systolic and diastolic blood pressure across the waves to be correlated, but we maintain 

the restriction that the method factors at each wave are uncorrelated with each other, with 

the method factors across waves, and with all of the latent trait variables. We refer to this 

specification as the initial CFA model. 

 For this analysis we maintain all of the cases by using a casewise ML estimator 

which only requires Missing At Random (MAR) rather than Missing Completely at Random 

(MCAR) data (Arbuckle 1996). To test for measurement invariance across waves we 
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consider two sets of constraints. The first set constrains the random error variances for the 

respective blood pressure readings to be equal across waves. The second set constrains the 

variances of the method factors to be equal across waves. These sets of constraints also 

represent restricted versions of the initial CFA model and can thus be assessed with chi-

square difference tests as well as changes in the BIC. 

 A useful means of assessing the measurement properties of each reading is to 

examine the standardized validity coefficient (Bollen 1989). In this setting, the 

standardized validity coefficient is equal to the standardized factor loading for the latent 

trait variables and is given by 

 

     
  √

    
     

 

        
  (2) 

 

where     
  is the variance of the latent trait variable and          is the variance of the 

blood pressure reading. Batista-Foguet et al. (2001) refer to this quantity as a measure of 

“measurement quality,” but we use the earlier terminology. 

 To test for measurement invariance across females and males, we place the 

preferred CFAs from our second analysis into a multiple group (MG) framework with 

groups defined by sex. We continue to use a Casewise ML estimator to maintain all of the 

cases in this analysis. The initial MG CFA model allows for all of the free parameters to vary 

by sex. We consider a similar set of constraints as with the analysis of measurement 

invariance across waves. First, we test whether the random error variances are equal for 
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females and males. Second, we test whether the method factor variances are equal for 

females and males. 

 Our final research questions involves assessing the measurement properties of a 

simple average of the three readings as compared with a weighted averaged based on 

factor scores from the best MTMM models from the first analysis. To assess the two 

approaches to constructing linear combinations of the readings we rely on a measure of 

validity given by 

     
∑   

     ∑   
     ∑           

    ∑        
, (3) 

where wjk are weights, either the estimated factor scores or 1/3 and 0 for the simple 

average,     are the error variances for each reading, and     are the variances of the 

method factors (Batista-Foguet, Coenders, and Ferragud 2001).  

 

 

Results 

 The first research question concerns whether there are any differences in the 

measurement properties of the first, second, and third readings. We begin by testing for 

relative bias across the readings by first constraining the factor loadings for the latent 

systolic and diastolic blood pressure variables (the latent trait variables) to all equal 1 and 

then constraining the intercepts for each of the readings to equal 0. Table 1 provides the 

model fit statistics for the initial MTMM model and then the two restricted versions of the 

initial model separately for females and males and for each of the waves.   To partially take 
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account of the multiple tests performed, we use the Holm (1979) multiple testing 

correction to take account of the number of tests performed within each table.   

 

-- Insert Table 1 about here -- 

 

 We find that on balance the initial MTMM models have a good fit with the data for 

both females and males across all three waves.  Fit is assessed using the chi-square test of 

whether the model exactly predicts the covariance matrix and means of the observed 

variables.  Because of the potential of excessive statistical power of the chi-square tests in 

large samples, we supplement them with fit indices.  Specifically, we use the BIC (Schwarz 

1978), CFI (Bentler 1990), TLI (Tucker and Lewis 1973), and RMSEA (Steiger and Lind 

1980).  For the BIC [chi-square – df* ln(N)], large negative values signify a good fit (Raftery 

1995) while values at or close to  1 represent the best fit for the CFI and TLI.   RMSEA 

values of less than 0.05 are desired while values greater than 0.10 suggest a poor fit in 

large samples (Browne and Cudeck 1993). 

The chi-square tests are all non-significant, a result that is particularly impressive 

given the large sample size. The BICs are all negative, which indicate that the model is 

preferred over the saturated model. The CFIs and TLIs are all close to 1 and the RMSEAs 

are all less than 0.05. 

 Turning to the restricted versions of the initial model, we find that the difference in 

BICs strongly prefer the restricted models over the initial model for both females and males 

across all waves. The chi-square difference tests also largely prefer the restricted models. 

The one exception is for males at wave 1. The chi-square different test indicates a 
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statistically significant deterioration in model fit with restricting the factor loadings to 

equal 1 and with the additional constraint of restricting the intercepts to equal 0. We 

examined the estimates for the factor loadings and intercepts for all of the initial models 

and found all factor loadings to lie between 0.98 and 1.00 and no consistent pattern among 

the estimates for the intercepts that would suggest systematic bias. Thus we conclude that 

there is little evidence of substantively important bias for the loadings and intercepts 

across the blood pressure readings for females and males across the three waves of data. 

We adopt the MTMM models with factor loadings constrained to 1 and intercepts 

constrained to 0 in the following analyses. 

 The second research questions concerns whether the measurement properties of 

the three readings differ across waves. For this analysis we specify separate CFAs for 

females and males that combine the restricted version of the MTMMs from each wave. 

Table 2 reports the model fit statistics for the initial CFA MTMM models for females and 

males as well as two restricted versions of the initial model. The first restricted version 

constrains the error variances for each of the respective readings to be equal across waves. 

The second restricted model relaxes the error variance constrain and instead constrains 

the variances of the respective method factors to be equal across waves. 

 

-- Insert Table 2 about here -- 

 

As with the individual MTMM models we find that the initial CFA MTMM models 

have a good fit with the data. The BICs are negative, the CFIs and TLIs are close to 1, the 

RMSEAs are both below 0.02, and the chi-square statistic for females is non-significant. The 
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chi-square statistic for males is significant, but once again is not that large given the sample 

sizes and the complexity of the model. We find, however, that model fit deteriorates quite 

substantially with constraints either to the error variances or to the method factor 

variances. For both females and males, the chi-square difference tests reject both versions 

of restricted models as do the BICs. These results indicate that the variances of the error 

terms and the variances of the method factors are not stable over time (presented below), 

which suggests that the measurement properties of the readings differ across waves. 

Our third research question concerns whether the measurement properties of the 

readings vary by sex. We address this question by specifying a multiple group version of 

the CFA MTMM models discussed above with the groups defined by sex. Table 2 includes 

the model fit statistics for the initial multiple group CFA MTMM and for two restricted 

versions of the initial model. The first restricted version constrains the error variances for 

the respective readings to be equal for females and males. The second restricted version of 

the model includes the constraint that the method factor variances are equal for females 

and males.  

As with the CFA MTMM models we find that the initial model has a reasonable fit, 

though it does have a statistically significant chi-square statistic. Both of the restricted 

models, however, result in substantially worse model fits and are rejected by the chi-

square difference tests. Thus the results indicate that the variances of the error terms and 

the variances of the method factors are not equivalent for females and males. There is no 

clear pattern to the variation between females and males. At some waves and for some 

readings the method factor variance is greater for females, while at some waves and for 

some readings the method factor variance is greater for males. 
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Table 3 reports estimates for the standardized trait factor loadings, the method 

factor variances, and the error variances from the initial CFA MTMM models. These 

estimates provide additional information about the measurement properties of the blood 

pressure readings. The estimates for the standardized loadings are all quite close to 1 for 

both females and males across all three waves. There are some slight differences in the 

estimates across the different readings. At wave 1, the validities of the three readings all 

virtually identical for female and male, systolic and diastolic blood pressure. At wave 2, the 

second reading of both systolic and diastolic blood pressure has slightly higher validity 

than the first and third readings for both females and males with the one exception that 

validities of the second and third readings for systolic blood pressure for females are equal. 

Finally, at wave 3, the third reading of systolic and diastolic blood pressure has slightly 

higher validity for both females and males than the first and second readings, with the 

exception that the second reading has the highest validity for diastolic blood pressure for 

females. Nonetheless, these slight differences in estimates indicate that the readings are all 

roughly equally valid and thus, in contrast to past studies, there is little evidence to prefer 

one reading over the others in our sample.  

 

-- Insert Table 3 about here -- 

 

 We find quite small estimated variances for the method factors for both females and 

males across all waves. In all cases, the method variances are less than one, which are at 

least two orders of magnitude less than the variances of the latent traits that range from 78 

to 117 for systolic blood pressure and 58 to 86 for diastolic blood pressure. The estimated 



 14 

method variances are also smaller than the estimated variances of the random errors. This 

suggests that the systematic errors in the readings in this data are minimal and in fact even 

less than the random errors. It is particularly notable that the systematic errors in readings 

are virtually zero for females at wave 1. It is possible that this is due to a tendency for the 

people taking the readings to fill in the results from the first reading for the subsequent 

readings. It is not clear why this would be the case for females more so than for males. 

 We also find relatively small estimated error variances for each of the blood 

pressure readings when compared with the variances of the latent traits. The error 

variances for the blood pressure readings at wave 1 are roughly an order of magnitude less 

than the error variance for the readings at waves 2 and 3, though the error variances at 

wave 2 are generally greater than the variances at wave 3. At wave 1 for females and males, 

we find the third reading of systolic blood pressure and the second reading of diastolic 

blood pressure have the smallest error variances. At wave 2, the second reading for systolic 

blood pressure for females and males, the second reading of diastolic blood pressure for 

females, and the third reading of diastolic blood pressure for males have the smallest error 

variances. While at the third wave, the third reading has the smallest error variance with 

the exception of diastolic blood pressure for females in which the second reading has the 

smallest error variance. Thus, as with the validities, there does not appear to be a 

systematic pattern of lower error variances for any specific reading across females and 

males across the three waves. 

 Our final research questions concerns whether there are differences in the 

measurement properties of a simple average of the readings as compared with a linear 

combination of the readings using factor scores. Table 4 presents the factors scores from 
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the individual MTMM models that constrain the trait factor loadings to 1 and the intercepts 

to 0. Table 5 presents the validities for the simple averages and the weighted averages 

using the factor scores reported in Table 4 for systolic and diastolic blood pressure among 

females and males across the three waves. 

-- Insert Tables 4 and 5 about here -- 

 We observe variation in the factor score weights that suggest the readings 

contribute unequally to predicting the underlying latent systolic and diastolic blood 

pressure variables. The variation, however, does not appear to be systematic. For instance, 

among females at wave 1, the third reading has the highest weight for systolic blood 

pressure, but the second reading has the highest weight for diastolic blood pressure. In 

contrast, among females at wave 2, the weights are pretty similar across the three readings 

for both systolic and diastolic blood pressure. The lack of a systematic pattern suggests that 

no particular blood pressure reading is uniformly preferred for females and males across 

waves. This is further underscored when we consider the validity indices reported in Table 

5. As one would expect, the indices for the factor scores are all equal to or greater than the 

indices for the simple averages, but the differences are substantively nil. These results 

suggest that among the adolescents and young adults in the CLHNS a simple average of the 

three blood pressure readings for females and males across the three waves of data 

provides a valid measure of blood pressure that performs essentially as well as linear 

combination using factor score weights. 

 

  

Discussion 
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Our research was primarily motivated by four research questions: (1) are there any 

differences in the measurement properties of the first, second, or third readings done at 

approximately the same time? (2) are there any differences in measurement properties of 

the three readings across the three waves of data? (3) are there any differences in 

measurement properties of the three readings across females and males?, and, (4) are 

there any differences in the measurement properties of a simple average of the three 

readings as compared with a linear combination based on factor scores?   

With respect to the first question, we do not observe any systematic differences in 

the measurement properties of the first, second, and third readings for both females and 

males across each of the three waves of data. This contrasts with past studies that suggest 

the second reading is the most reliable (e.g., Batista-Foguet, Coenders, and Ferragud 2001). 

The contrast in findings may be due to two sources: (1) our analysis estimates 

measurement properties on a younger population than in past studies, which could have 

less variance in blood pressure readings and (2) the blood pressure readings in our 

analysis have such high validity that it’s not easy to distinguish a best reading. 

We do find, however, that the there are differences in the measurement properties 

across waves and for females and males. In particular, we observed larger method factor 

variances at waves 2 and 3 than at wave 1, but otherwise few systematic patterns among 

the method factor variances. We also observed larger error variances at waves 2 and 3 than 

at wave 1, particularly at wave 2. Furthermore, in general, males had larger error variances 

than females. Thus, our results suggest that it is important to attend to potential differences 

in measurement properties over time and by sex. 
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Our final research question concerned how well linear combinations of the readings 

capture underlying “true” blood pressure and whether there are any differences in using a 

simple average as opposed to a linear combination based on factor score weights. We find 

that the linear combinations have quite high validity, and therefore do a good job of 

reflecting the underlying “true” blood pressure. In addition, we find that despite the 

unequal factor score weights, the simple average of the readings performs essentially as 

well as the linear combinations based on factor score weights. This result is also different 

than what Batista-Foguet et al. (2001) found in their analysis of an elderly population in 

Spain.  
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Tables and Figures 

 

Figure 1. Box plots for systolic blood pressure readings across three waves for 

females and males.  
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Figure 2. Box plots for diastolic blood pressure readings across three waves for 

females and males.  
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Table 1. Model fit statistics for separate MTMM models by sex and wave.       

  N χ2 df 
Adj  

p-val BIC CFI TLI RMSEA 

Wave 1 Female 
        M1: initial model 997 2.121 5 0.832 -32.403 1.000 1.000 0.000 

M2: trait loadings constrained to 1 997 8.147 9 1.000 -53.996 1.000 1.000 0.000 

M3: M2 + intercepts constrained to 0 997 13.402 13 1.000 -76.360 1.000 1.000 0.006 

Difference M2 - M1 
 

6.026 4 1.000 -21.593 
   Difference M3 - M1 

 
11.281 8 1.000 -43.957 

   Wave 2 Female 
        M1: initial model 896 12.776 5 0.486 -21.214 0.999 0.998 0.042 

M2: trait loadings constrained to 1 896 17.392 9 0.687 -43.789 0.999 0.999 0.032 

M3: M2 + intercepts constrained to 0 896 31.694 13 0.072 -56.679 0.998 0.998 0.040 

Difference M2 - M1 
 

4.616 4 1.000 -22.576 
   Difference M3 - M1 

 
18.918 8 0.337 -35.466 

   Wave 3 Female 
        M1: initial model 822 4.650 5 1.000 -28.909 1.000 1.000 0.000 

M2: trait loadings constrained to 1 822 12.535 9 1.000 -47.871 1.000 0.999 0.022 

M3: M2 + intercepts constrained to 0 822 17.829 13 1.000 -69.424 1.000 0.999 0.021 

Difference M2 - M1 
 

7.885 4 1.000 -18.962 
   Difference M3 - M1 

 
13.179 8 1.000 -40.515 

   Wave 1 Male 
        M1: initial model 1090 17.084 5 0.104 -17.886 1.000 0.999 0.047 

M2: trait loadings constrained to 1 1090 27.600 9 0.031 -35.345 0.999 0.999 0.044 

M3: M2 + intercepts constrained to 0 1090 43.213 13 0.001 -47.708 0.999 0.999 0.046 

Difference M2 - M1 
 

10.516 4 0.554 -17.460 
   Difference M3 - M1 

 
26.129 8 0.030 -29.822 

   Wave 2 Male 
        M1: initial model 1070 7.615 5 1.000 -27.262 1.000 0.999 0.022 

M2: trait loadings constrained to 1 1070 18.726 9 0.497 -44.053 0.999 0.999 0.032 

M3: M2 + intercepts constrained to 0 1070 31.120 13 0.081 -59.560 0.999 0.998 0.036 

Difference M2 - M1 
 

11.111 4 0.507 -16.791 
   Difference M3 - M1 

 
23.505 8 0.072 -32.298 

   Wave 3 Male 
        M1: initial model 990 8.760 5 1.000 -25.729 1.000 0.999 0.028 

M2: trait loadings constrained to 1 990 11.906 9 1.000 -50.173 1.000 1.000 0.018 

M3: M2 + intercepts constrained to 0 990 27.556 13 0.240 -62.114 0.999 0.999 0.034 

Difference M2 - M1 
 

3.146 4 1.000 -24.445 
   Difference M3 - M1   18.796 8 0.336 -36.386       

Notes: Adj. p-val are adjusted p-values using Holm’s sequential procedure. 
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Table 2. Model fit statistics for CFA MTMM models incorporating all waves.  

  N χ2 df 
Adj. 

p-val BIC CFI TLI RMSEA 

Female 
        M1: initial CFA model 1015 152.153 135 0.149 -782.404 1.000 1.000 0.011 

M2: equal error variances across waves 1015 4306.216 147 0.000 3288.587 0.908 0.904 0.167 

M3: equal method variances across waves 1015 289.695 141 0.000 -686.398 0.997 0.996 0.032 

Difference M2 - M1 
 

4154.063 12 0.000 4070.991 
   Difference M3 - M1 

 
137.542 6 0.000 96.006 

   

         Male 
        M1: initial CFA model 1112 199.804 135 0.001 -747.075 0.999 0.999 0.021 

M2: equal error variances across waves 1112 4170.735 147 0.000 3139.689 0.922 0.918 0.157 

M3: equal method variances across waves 1112 256.192 141 0.000 -732.770 0.998 0.998 0.027 

Difference M2 - M1 
 

3970.931 12 0.000 3886.764 
   Difference M3 - M1 

 
56.388 6 0.000 14.305 

   

         Multiple Group Male & Female 
        M1: initial MG CFA model 2127 351.957 270 0.001 -1716.909 0.999 0.999 0.017 

M2: equal error variances across sexes 2127 1463.565 288 0.000 -743.226 0.988 0.987 0.062 

M3: equal method variances across sexes 2127 570.974 279 0.000 -1566.855 0.997 0.997 0.031 

Difference M2 - M1 
 

1111.608 18 0.000 973.684 
   Difference M3 - M1   219.017 9 0.000 150.055       

Notes: Adj. p-val are adjusted p-values using Holm’s sequential procedure. 
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Table 3: Measurement parameters from initial CFA MTMM models 
combining waves. 

 
Female Male 

  Wave 1 Wave 2 Wave 3 Wave 1 Wave 2 Wave 3 

Std Trait Loadings 
      SBP1 1.000 0.969 0.990 0.999 0.975 0.988 

SBP2 0.999 0.982 0.986 0.999 0.989 0.989 
SBP3 1.000 0.982 0.992 0.999 0.979 0.992 
DBP1 0.997 0.968 0.982 0.997 0.969 0.988 
DBP2 0.998 0.983 0.993 1.000 0.985 0.990 
DBP3 0.995 0.976 0.981 0.999 0.984 0.994 

       Method variances 
      M1 0.000 0.632 0.739 0.067 0.676 0.277 

M2 0.000 0.543 0.287 0.005 0.000* 0.262 
M3 0.000 0.320 0.513 0.121 0.895 0.339 

       Error variances 
      SBP1 0.024 4.722 1.284 0.266 5.216 2.459 

SBP2 0.100 2.556 2.551 0.192 2.772 2.329 
SBP3 0.004 2.731 1.173 0.113 4.006 1.540 
DBP1 0.274 3.957 1.929 0.464 4.879 1.847 

DBP2 0.211 1.887 0.758 0.034 2.904 1.448 
DBP3 0.517 3.087 2.223 0.068 1.913 0.663 

Notes: 
      *The estimate for the variance is -0.206 with a standard error of 0.162. Given that 

this estimate is non-significant and a negative variance is nonsensical, we treat 
this estimate as 0. 
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Table 4. Factor score coefficients for blood pressure 
readings.   

  
systolic blood pressure diastolic blood pressure 

Group Trait read 1 read 2 read 3 read 1 read 2 read 3 

Female 
       Wave 1 SBP 0.140 0.034 0.826 0.000 0.000 0.000 

 
DBP 0.000 -0.001 0.003 0.353 0.457 0.187 

Wave 2 SBP 0.217 0.380 0.382 0.009 -0.014 0.018 

 
DBP 0.006 -0.022 0.027 0.229 0.439 0.308 

Wave 3 SBP 0.351 0.231 0.408 -0.044 0.073 -0.023 

 
DBP -0.010 -0.006 0.022 0.223 0.553 0.211 

Male 
       Wave 1 SBP 0.218 0.361 0.420 -0.008 0.223 -0.215 

 
DBP 0.021 0.034 -0.055 0.053 0.756 0.190 

Wave 2 SBP 0.214 0.506 0.265 -0.011 0.073 -0.053 

 
DBP -0.008 0.069 -0.054 0.191 0.398 0.394 

Wave 3 SBP 0.281 0.296 0.413 0.017 0.018 -0.030 
  DBP 0.019 0.014 -0.029 0.225 0.279 0.489 

         

 

Table 5. Comparison of validity measures for simple average of readings 
and linear combination constructed using factor scores. 

 
Simple Average 

Factor Score Linear 
Combination 

  SBP DBP SBP DBP 

Female 
    Wave 1 1.000 0.998 1.000 0.998 

Wave 2 0.985 0.983 0.986 0.985 

Wave 3 0.993 0.990 0.993 0.992 
Male 

    Wave 1 0.999 0.999 1.000 1.000 

Wave 2 0.987 0.986 0.989 0.988 
Wave 3 0.993 0.994 0.993 0.994 

      


