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Abstract

The individual rate of aging is defined as the relative derivative of one’s risk of death

by senescent causes with respect to one’s age. The b-hypothesis, formulated by Vaupel

(2010), suggests that all humans might share the same individual rate of aging. This

can be true if and only if the aging process is captured by a Gompertz curve. Assuming

that the b-hypothesis holds, we estimate the individual rate by fitting a two-dimensional

gamma-Gompertz frailty model on human mortality surfaces. We present several sta-

tistical approaches, their advantages and shortcomings, as well as some preliminary

conclusions.

Introduction

Lifetable adult mortality data (death counts and exposures in the absence of explana-

tory variables) are usually fit parametrically by a gamma-frailty model with a Gompertz-

Makeham baseline (Beard 1959; Vaupel et al. 1979). This is a model for cohorts, but its
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straight application to cohort mortality data produces dubious estimates for the individual

rate of aging (Gompertz’ b) as it does not incorporate improvements in age-specific mortality

rates that occur yearly (see, for example, Tuljapurkar et al. 2000). Vaupel (1986) proposed a

model that accounts for mortality progress over period assuming, though, one and the same

improvement at each age and in every single year. Using Japanese data from HMD (2014),

Missov and Lenart (2011) showed on a 3D-scatterplot for mortality reduction over age and

year that this assumption is quite strong (see Missov and Lenart 2011: p.461, Figure 2).

However, an extension of the model by Vaupel (1986), accounting for the different rates of

mortality progress over age and year, results in a statistically unidentifiable model as the

number of parameters to estimate exceed the number of data points. As a result, in order

to assess the individual rate of aging properly, it is necessary to design adequately and fit

accordingly statistical models for mortality surfaces instead of single cohorts.

A Gamma-Gompertz Model for Mortality Surfaces

Suppose in a population the force of mortality for an individual aged x in year y is given by

µ(x, y |Z(x0, y − x) ) = Z(x0, y − x) · µ(x, y | 1) , (1)

where frailty Z(x0, y − x) of individuals in the (y − x)-cohort is a random variable that

stays fixed from their adult age x0 onwards. In this way we allow one’s frailty to change

from birth to age x0, but not thereafter. We assume age x0 is also big enough, so that the

effect of the Makeham term is negligible. The density π(z |x0, y−x) characterizes the initial

distribution of frailty, i.e. among individuals aged x0 in year y−x+x0. Here and throughout

the entire article we assume that x0 ≤ x. The hazard µ(x, y | 1), which we will address as the

baseline hazard, characterizes the mortality mechanism for the “standard” individual, i.e.

an individual with unit frailty. Note that µ(x, y |Z(x0, y − x) ) characterizes a distribution

conditional upon Z(x0, y − x). As frailty is unobserved, model (1) cannot be directly fit to



mortality data. Since the latter are usually aggregated for the entire population age- and

year-wise, an adequate model for their study is the marginal distribution of (1) with respect

to Z(x0, y−x). The marginal (or population) force of mortality of individuals aged x in year

y is given by

µ̄(x, y) = z̄(x, y − x) · µ(x, y | 1) , (2)

where z̄(x, y− x) is the expected (we will also use the term average) frailty among survivors

of the (y − x)-cohort to age x in year y.

As already pointed out, we assume that after x0 mortality is predominantly senescent,

i.e. µ(x, y | 1) for x ≥ x0 follows a Gompertz curve. Then the hazard µ(x, y |Z(x0, y − x) )

for an individual aged x in year y is given by

µ(x, y |Z(x0, y − x) ) = Z(x0, y − x) · a(x0, y) · eb(x−x0) , (3)

where a(x0, y) is the initial (at age x0) baseline (for Z(x0, y − x) = 1) hazard level in year y

(to account for mortality progress from year y − x to year y − x+ x0), and

b =
∂

∂x
lnµ(x, y |Z(x0, y − x) )

is the individual rate of aging.

Using (2) and (3), we can express the marginal hazard µ̄(x, y) as

µ̄(x, y) = z̄(x, y − x) · a(x0, y) · eb(x−x0) . (4)

Suppose that individual frailty follows a gamma distribution with unit frailty and squared

coefficient of variation γ, i.e. Z(x0, y−x) ∼ Γ(1/γ, 1/γ). Then we can express the population

force of mortality as



µ̄(x, y) = z̄(x0, y − x) · [s̄(x, y)/s̄(x0, y − x+ x0)]
γ · a(x0, y) · eb(x−x0) , (5)

where s̄(x, y) is the survivorship to age x for the cohort born in year y − x. This general

outcome means that the population’s force of mortality µ̄(x, y) at age x in year y depends

on the following quantities

(i) the average frailty z̄(x0, y − x) of survivors to age x0 in the (y − x)-cohort and the

survivorship from age x0 to age x in it

(ii) the initial (at age x0) level of mortality a(x0, y) in year y

(iii) the rate of aging b (assumed to be constant)

As (i) vary across cohorts, (ii) varies across years, and eb(x−x0) varies age-wise, (5) is an

age-period-cohort model, which is unidentifiable unless we fix the behavior of the right-hand

side on one of the three axes.

Statistically Feasible Models

Losing part of the generality in (5), we can deduce three special cases, in which, on the

one hand, we are able to overcome the age-period-cohort unidentifiability problem, and,

moreover, get a demographic insight from actual datasets. For conciseness we define the

survivorship from age x0 to x within the (y − x)-cohort by S̄ = [s̄(x, y)/s̄(x0, y − x+ x0)]
γ.

Note that the product z̄(x0, y − x) · a(x0, y) cannot be statistically disentangled when esti-

mating model (5) or any of its simplifications that we further present – it is always estimated

together on a log-scale as an intercept of the Poisson regression. Thus we are not able to

assess separately the effect of selection z̄(x0, y − x) to age x0 and the effect of mortality

improvement on the level of mortality a(x0, y) at the starting age in year y. All statistically

feasible models deduced from (5) with their associated assumptions can be classified into the

following three groups:



1. Simple model: The simplest case is the one, in which both the average frailty among

survivors and the initial baseline hazard level do not change over cohorts and years:

µ̄(x, y) = z̄(x0, y0 − x0) · a(x0, y0) · S̄ γ · ebx .

Obviously this over-simplistic model is unrealistic given the mortality progress made

in the last decades. Note that in this special case we would not be able to distinguish

between the average frailty and the initial level of mortality. We can thus simplify the

model as it follows:

µ̄(x, y) = w̄(x0) · S̄ γ · ebx , (6)

where w̄(x0) denotes the starting level of mortality at age x0 which is the same for each

cohort and in every year due to the absence of mortality progress. Because of the latter

this model does not advance our knowledge of estimating b and, thus, it can only serve

as an example of the simplest statistically feasible two-dimensional gamma-Gompertz

setting.

2. Cohort model: In the second special case we assume that the average frailty among

survivors changes across cohorts. As a result we are not able to estimate a(x0, y).

Model (5) reduces to

µ̄(x, y) = z̄(x0, y − x) · S̄ γ · ebx . (7)

Thus, we incorporate all period mortality improvements in the change of z̄(·) over

cohorts.

3. Period model: The last option is based on the assumption that a(·) captures the

change in mortality over y. In this way we lose information about the average frailty

among survivors. Formally:



µ̄(x, y) = a(x0, y) · S̄ γ · ebx . (8)

This model generalizes the approach proposed by Vaupel (1986), in which the mortality

progress follows a specific parametric structure, i.e. a(x0, y) = a0 · e−ρy.

Estimation Procedure

Formally, let D(x, y) and E(x, y) denote, respectively, the number of deaths and exposure

at age x in year y. We can assume that death counts are Poisson-distributed D(x, y) ∼

P [E(x, y) · µ̄(x, y)]. A common feature of all models in the previous section is that the log-

force of mortality can be represented as a linear combination of a model matrix and a set of

parameters: ln [vec(µ̄(x, y))] = Xβ, where:

X β

Simple model [1 : vec(ln(S̄)) : vec(x1n)] [ ln(w̄(x0)) ; γ ; b ]

Cohort model [Ψ : vec(ln(S̄)) : vec(x1n)] [ ln(z̄(x0, y − x)) ; γ ; b ]

Period model [diag(n)⊗ 1m : vec(ln(S̄)) : vec(x1n)] [ ln(ā(x0, y)) ; γ ; b ]

The elements ψij of Ψ are equal to 1, if row i belongs to cohort j, and zero otherwise. 1m

and 1n are vectors of 1s, whose lengths m and n correspond to the number of ages and years,

respectively, and ⊗ denotes the Kronecker product. This aids estimating all models using

(penalized) iteratively re-weighted least-squares

(X ′W̃X + P )β̃ = X ′W̃ z̃ , (9)

where W and z̃ are derived from the Poisson assumption (McCullagh and Nelder 1989).

Instead of enforcing parametric structure, we assume that both average frailty among sur-

vivors and mortality progress change smoothly over cohorts and years, respectively. This is

captured in strategies 2. and 3. by the penalty term P , which measures the roughness of



z̄(x0, y − x) and a(x0, y) with differences of order d, weighted by a positive regularization

parameter (Camarda 2012).

Application

We illustrate the performance of each strategy on Swedish female mortality data (HMD

2014) for years 1955-2000 and ages 80-104. Figure 1 (right panel) shows the outcomes over

ages for selected years. While the first strategy fails to describe mortality developments,

the other two models seem to be equally correct. We can discriminate between strategies

2. and 3., by computing the Bayesian Information Criterion (Schwarz 1978): the model in

which mortality progress is captured by the parameters a(x0, y) outperforms the others (see

left panel of Figure 1). Figure 2 illustrates the estimated parameters (with 99% confidence

bounds) for the selected strategy.

Strategy Dev ED BIC
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Figure 1: Left panel: Deviance, Effective Dimension and Bayesian Information Criterion.
Right panel: Actual and fitted death rates, in log scale.
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Figure 2: Estimated parameters from strategy 3. as well as the associated 99% confidence
intervals.

Possible Model Extensions

In order to reduce the number of estimated parameters and overcome the age-period-cohort

unidentifiability problem in (5), one can use auxiliary information and apply formal demo-

graphic relationships. One option would be to incorporate information about the human

mortality plateau reached at a level of 0.7 (see Gampe 2010). In a gamma-Gompertz multi-

plicative setting this implies fixing b/γ = 0.7, which eliminates γ. Note that this approach

is applicable to strategies 1.-3. from the previous sections if and only if we assume that γ

is one and the same for all periods and cohorts. Nevertheless different cohorts y − x could

also have different γ = γ(y − x). This assumption generalizes (5) since heterogeneity in

frailty is allowed to change over cohorts. While the resulting parameter-vector leads again

to the problem of model unidentifiability, the corresponding generalization of (5) reduces to

a number of additional special cases, in which the resulting models could be feasible.

In order to solve the age-period-cohort unidentiability problem, one could also make

use of some formal demographic relationships. For example, when a(y) has a parametric

structure as in Vaupel (1986), we can use such relationships to express µ̄(x, y) just as a

function of a0 and γ. Missov et al. (2014) show that the auxiliary knowledge we need is just

about the modal age at death and the observed period life expectancy increase over year.



This approach could be implemented, though, just in strategy 3. from the previous sections

and only when a(x0, y) = a0 · e−ρy.

We plan to explore these new approaches and estimate the presented class of models to

different countries to shed new light on the estimation of the human rate of aging.
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