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Abstract. Cohort Change Ratios (CCRs) have a long history of use in demography. In spite of their history 

of use, they appear, however, to have been overlooked in regard to a major canon of formal demography, 

stable population theory. In this paper, CCRs are explored as a tool for examining the idea of a stable 

population. In comparing the approach using CCRs to the traditional analytical approach, benefits and 

drawbacks are noted. The paper also introduces an Index of Stability, which is used in a regression model 

to estimate the number of years before the population in question becomes (approximately) stable. The 

regression model works reasonably well and, as such, provides something not available in the traditional 

analytical approach, which is an estimate of the time to (approximate) stability for a given population.  

Continuing the use of regression analysis, we also find that a regression model works reasonably well in 

estimating the intrinsic rate of increase from the initial rate of increase. We know that regression models 

are generally not as satisfying as analytical expressions in regard to describing relationships. It would be 

much more elegant to express the time to stability in terms of an analytic expression that incorporates the 

initial stability index (and probably other information about initial conditions) than it is to express the 

relationship in the form of a regression model. The same can be said about the relationship between the 

initial rate of increase in a given population and its intrinsic rate of increase. However, we also note that 

regression analysis has already been successfully employed in conjunction with stable population analysis, 

to include estimating intrinsic r from the proportional age distribution of a given population, mean 

generation length from a trial value of the intrinsic rate of increase, and the generation of model life table 

families and stable populations. 
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I. Introduction 

Cohort Change Ratios (CCRs) have a long history of use in demography, starting 

with Hardy and Wyatt (1911).  Under the rubric of “Census Survival Ratios,” they have 

been used to estimate adult mortality (Swanson and Tedrow 2013, United Nations 2002) 

and under the rubric of the “Hamilton-Perry” method, they are used to make population 

projections (Hamilton and Perry 1962, Smith Tayman and Swanson 2013, Swanson and 

Tayman 2013, Swanson Schlottmann and Schmidt 2010).  However, they appear to have 

been overlooked in regard to examining the concept of a stable population.
1
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A stable population is a population with an invariable relative age structure and a 

constant rate of growth. That is, the proportion of people in each age group remains 

constant over time (Coale 1972, Dublin 1925, Lotka 1907, Preston et al. 2001). When the 

absolute number of people in each group is also constant over time, a stationary 

population exists, which is a special case of a stable population in which the growth rate 

is zero (Preston et al. 2001). 

A stable population comes about if a constant set of fertility and mortality rates is 

applied to an arbitrarily chosen age distribution (Coale 1972, Dublin 1915, Lotka 1907, 

Preston et al. 2001). That is, if a given population is subjected to constant fertility and 

mortality rates, it will eventually reach stability. Eventually, when a given population 

reaches stability, the constant set of fertility and mortality rates produce a constant rate of 

population change. This constant rate of change is known by several names, but in this 

paper we use the term intrinsic r (Preston et al. 2001).  

In line with observations by Preston et al. (2001), among others, a stable 

population will results if a constant set of migration rates is included with sets of constant 

fertility and mortality rates. Since migration, fertility, and mortality rates make up CCRs, 

this implies that applying a set of constant CCRs to a given population will eventually 

produce a stable population. This is the main topic of this paper. We also note that there 

is an intrinsic r (r) associated with a stable population produced by applying a constant 

set of CCRs to a given population. 

In pursuing the main topic, the paper also introduces an Index of Stability (S), which 

is used in a regression model to estimate the number of years before the population in 

question becomes (approximately) stable. As we show later, the regression model works 
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reasonably well and, as such, provides something not available in the traditional 

analytical approach, which is an estimate of the time to (approximate) stability for a 

given population.  Continuing the use of regression analysis, we also find that a 

regression model works reasonably well in estimating the intrinsic rate of increase (r) 

from the initial rate of increase. We know that it would be much more elegant to express 

the time to stability and r in terms of analytic expressions that incorporate information 

about initial conditions than it is to express these relationship in the form of regression 

models. However, we also note that regression analysis has already been successfully 

employed in conjunction with stable population analysis, to include estimating intrinsic r 

from the proportional age distribution of a given population (Keyfitz and Flieger 1968: 

49, United Nations 1968), mean generation length from a trial value of the intrinsic rate 

of increase (McCann 1973), and the generation of model life table families and stable 

populations (Coale and Demeney 1968).   

The reminder of this paper is composed of seven sections, in the next one (II), we 

discuss the CCR method while in Section III we discuss stable population concepts. The 

CCR approach to the concept of a stable population is discussed in Section IV while 

Section V describes the estimation of time to stability and Section VI describes the 

estimation of r from the initial rate of increase. Section VII concludes the paper with a 

discussion of the results and ideas for future research. 

II. Cohort Change Ratios 

Because we use a constant set of CCRs to project a population to stability, we discuss 

them in conjunction with the Hamilton-Perry method.  The Hamilton-Perry Method is a 

variant of the cohort-component method that has far less intensive input data 
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requirements. Instead of mortality, fertility, migration, and total population data, which 

are required by the full-blown cohort-component method, the Hamilton-Perry method 

requires data only from the two most recent censuses (Hamilton and Perry 1962, Smith 

Tayman and Swanson 2013, Swanson and Tayman 2013, Swanson Schlottmann and 

Schmidt 2010).   

The Hamilton-Perry method moves a population by age (and sex) from time t to time 

t+k using CCRs computed from data in the two most recent censuses. It consists of two 

steps. The first uses existing data to develop CCRs and the second applies the CCRs to 

the cohorts of the launch year population to move them into the future. The second step 

can be repeated infinitely, with the projected population serving as the launch population 

for the next projection cycle.  The formula for the first step, the development of a CCR is: 

                      nCCRx,i = nPx,i,t / nPx-k,i,t-k            [1]             

 where  

 nPx,i,t is the population aged x to x+n in area i at the most recent census (t),  

 nPx-k,i,t-k  is the population aged x-k  to x-k+n in area i at the 2
nd

  most recent  

                            census (t-k),  

             k is the number of years between the most recent censuses at time t  

                          for area i and the one preceding it for area i at time t-k. 

 

 The basic formula for the second step, moving the cohorts of a population into the 

future is: 

   nPx+k,i,t+k = (nCCRx,i )*( nPx,i,t )          [2] 
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  where  

  nPx+k,i,t+k is the population aged x+k to x+k+n in area i at time t+k 

    nCCRx,i = nPx,i,t / nPx-k,i,t-k                                      

  nPx,i,t is  the population aged x to x+n in area i at the most recent census (t), 

                        k is the number of years between the most recent censuses at time t  

                          for area i and the one preceding it for area i at time t-k. 

  

Given the nature of the CCRs, 10-14 is the youngest age group for which 

projections can be made if there are 10 years between censuses. To project the population 

aged 0-4 and 5-9 one can use the Child Woman Ratio (CWR), or more generally a “Child 

Adult Ratio” (CAR). It does not require any data beyond what is available in the 

decennial census.  There are different ways to develop a CAR (Hamilton and Perry 1962, 

Smith, Tayman and Swanson 2013: 176-180, Swanson and Tayman 2013, Swanson, 

Schlottmann and Schmidt 2010). In this paper we take the ratio of the population aged 0-

4 to the population aged 20-34 and the ratio of the population aged 5-9 to the population 

aged 25-39. Here are the CAR equations for projecting the population aged 0-4 and 5-9, 

respectively.  

 Population 0-4:  5P0,t+k = (5P 0,t / 20P15,t) *( 20P15,t+k)    [3] 

 Population 5-9:  5P5,t+k = ( 5P5,t / 25P15,t ) * ( 25P15,t+k )    [4] 

   where  

 P = population,  

 t is the year of the most recent census 

           and t+k is the estimation year 
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While there are other “adult” age groups that could be used to define CAR, we prefer the 

preceding for purposes of this paper because the definitions shown in the two preceding 

equations are designed for a population in which fertility is at or below replacement, (i.e., 

the TFR is less than 2.1 or so), which correlates with the fact that first births tend to be 

both postponed and low in number. 

Projections of the oldest open-ended age group differ slightly from the CCR 

projections for the age groups beyond age 10 up to the oldest open-ended age group.   If, 

for example,  the final closed age group is 80-84, with 85+ as the terminal open-ended 

age group, then calculations for the ∞CCR85,i,t  require the summation of the three oldest 

age groups to get the population age 75+ at time t-k: 

   ∞CCR75,i,t   = ∞P85,i,t  / ∞P75,i,t-k                      [5]  

 The formula for projecting the population 85+ of area i for the year t+k is: 

   ∞P85,imt+k = (∞CCR75,i,t )* (∞P75,i,t)                      [6] 

  

 Table 1 provides an example of the Hamilton-Perry Method for the state of 

Alaska. It uses the country’s 2000 census data and 2010 estimates by age to generate a 

2020 population projection of the population by age. Since the population data are ten 

years apart for Alaska with a final open-ended age group of 85+, the conventions 

described above are used in terms of the CCRs, CAR, and the projection of age group 

85+.  Important to the subsequent discussion are the CCRs developed for the 2000-2010 

period.  

                                                (Table 1 About Here) 
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 Table 1 shows that launching from a population of 710,231 in 2010, the 

Hamilton-Perry Method generates a 2020 population of 795,728. This projection 

corresponds to the increase in population between 2000 (626,932) and 2010 (710,231). 

This increase largely reflects Alaska’s net in-migration and relatively young population. 

Since this touches on the implicit recognition of the components of population change in 

the Hamilton-Perry projection for Alaska, it is worthwhile to note here the Hamilton 

Perry method can be described in terms of these components. That is, the Hamilton-Perry 

Method can be expressed in terms of the fundamental demographic equation.
2
  Since the 

fundamental equation is: 

    Pi,t+k = Pi,t + Bi – Di + Ii - Oi                        [7] 

   where 

Pi,t = Population of area i at time t (e.g., the launch date) 

Pi,t+k = Population of area i at time t+k (e.g., the projection target date) 

Bi = Births in area i between time t and t+k 

Di = Deaths in area i between time t and t+k 

 Ii = In-migrants in area i between time t and t+k (including international and  

         domestic sources) 

  Oi = Out-migrants in area i between time t and t+k (including international and  

                      domestic destinations) 

Equation [1] can be expressed as  

 nCCRx,i = nPx,i,t / nPx-k,i,t-k           [8]                 

  

since 
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 nCCRx,i =( nPx-k,i,t-k + Bi – Di + Ii - Oi )/( nPx-k,i,t-k)    [8.a]           

while equation [2] can be expressed as 

nPx+k,i,t+k = (nCCRx,i )*( nPx,i,t )            [9] 

since  

nPx+k,i,t+k = (( nPx-k,i,t-k + Bi – Di + Ii - Oi )/( nPx-k,i,t-k))*( nPx,i,t )         [9.a]   

  

where x+k >= 10 then 

     nCCRx,i =( nPx-k,i,t-k  – Di + Ii - Oi )/( nPx-k,i,t-k)                [9.b] 

and since Ni = Ii - Oi 

nCCRx,i =( nPx-k,i,t-k  – Di + Ni )/( nPx-k,i,t-k)                  [9.c]                

where x+k >= 10 

These equations clearly reveal that the Hamilton-Perry Method expresses the 

individual components of change (birth, deaths, and migration) in terms of cohort change 

ratios and incorporates these components of change in the projections made from it. Note 

that the fundamental equation can be generalized to include age groups (as well as sex, 

race, and ethnicity).  

III.     A Stable Population: The Traditional Approach 

As noted earlier, a stable population is a population with an invariable relative age 

structure and a constant rate of growth. That is, the proportion of people in each age 

group remains constant over time and the population as a whole has a constant rate of 

increase (Coale 1972, Dublin 1925, Lotka 1907, Preston et al. 2001).    

An important feature of the stable population model is that over time a population 

“forgets” its past age distribution when it is subject to constant vital rates regarding the 
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components of change (Coale 1972, Cohen 1979, Preston et al. 2001).  This property is 

known as weak ergodicity (Cohen 1979). 

Alfred J. Lotka is generally credited with formulating the idea of a stable 

population and exploring many of its important features, including the finding that in the 

absence of migration, a population subject to constant fertility and mortality rates would 

eventually have a constant rate of natural increase (Dublin 1925, Lotka 1907). Continuing 

the analytical tradition established by Lotka, many researchers have examined the idea of 

a stable population and refined its underlying theory and extended its applications (Alho 

and Spencer 2005, Arthur and Vaupel 1984, Bacaër 2011, Bennett and Horuchi 1984, 

Caswell 2001, Coale 1972, Cohen 1979, Kim and Sykes 1976, Le Bras 2008, Pollard et 

al. 1974, Popoff and Judson 2004, Preston et al. 2001, Preston and Coale 1982, Rogers 

1985, Schoen 1985, United Nations 1968). Most of this research has, however, been 

confined to examining a population not affected by migration. However, this is an un-

necessarily restrictive assumption (Preston et al. 2001). Nonetheless, other than the 

simple migration rates employed by Rogers (1985, 1995) and subsequent investigations 

of more refined model migration schedules (Rogers et al. 1986), this restriction appears 

to remain a governing force in the examination of stable population ideas.  

Another “unnecessarily restrictive” assumption that has governed much of the 

work on stable populations is defined by the so-called “two-sex” problem (Pollak 1986, 

1990, Preston and Coale 1982).  In this problem (which evidently stems from Lotka’s 

1907 formulation of a stable population), only one sex (virtually always women) was 

examined in the context of a stable population because of problems reconciling the 

numbers of births resulting from including both sexes. However, as Preston et al. (2001) 
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show a “female-dominant” approach to fertility offers a convenient way around this 

problem, one that has been employed in different ways by others (Barclay, 1958: 216-

222; Keyfitz and Flieger, 1968). 

Although Preston et al. (2001) point out that the assumption of no migration is un-

necessarily restrictive, stable population theory has largely been examined using this 

restriction. It also has largely been examined in terms of a single sex due to the so-called 

“two-sex” problem, which Preston et al. (2001) also argue is un-necessarily restrictive. 

The Lotka Integral Equation as given by Preston et al. (2001) is  

B(t) = 
0

t

 N(a,t)m(a)da + G(t)      [10] 

    where   

B(t) = number of births at time t 

N(a,t) = number of persons aged a at time t 

m(a) = rate of bearing female children for women aged a 

G(t) = births to women alive at time 0 

 

As Preston et al. (2001) observe, the N(a,t) function for women born after time 0 

can be expressed in terms of the number of births into their cohort and the probability 

of surviving to age a, p(a): 

N(a,t) = B(t-a)*p(a)        [11] 

where t>0 

Making this substitution into the preceding equation yields 

B(t) = 
0

t

  B(t-a)*p(a)* m(a)da + G(t)                     [12]                                     
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And since the value of G(t) goes to zero over time (e.g., in about 50 years), the birth 

sequence can be expressed as  

B(t) = 
0

t

  B(t-a)*p(a)* m(a)da                               [13]                          

where t> 50 

  The preceding Equation can be solved when an expression for B(t) is substituted 

into its left and right hand sides. Lotka showed that an exponential birth series would 

do this. Let B(t) = B*e
pt

 

Then  

B*e
pt

   = 
0

t

  B*e
p(t-a) 

*p(a) *m(a)da                  [14]                                         

where t> 50 

and cancelling the common term, B*e
pt

   from both sides yields 

1   = 
0

t

  B*e
pa 

*p(a)*m(a)da                        [15]                           

The ideas expressed in equations [10 to [15] are usually used to estimate “intrinsic r,” 

the rate of population increase when a given population in question attains stability 

Barclay (1958), Keyfitz and Flieger (1968) and Preston et al. (2001).                

III. A Stable Population: The CCR Approach 

  The CCR approach simply takes the cohort change ratios found at a current point 

in time and holds them constant until the population reaches stability.  To determine 

when a population has reached stability, the well-known “Index of Dissimilarity” is 

employed as an “Index of Stability” (S).
3
 The index is defined as: 

S =    {0.5* ∑│(npx/∑nPx)t+y - (npx/∑nPx)t │}.   [16]  



 12 

 

where 

y = number of years between census counts/projection cycles                            

x = age 

n = width of the age group (in years) 

t = year 

 

S compares the relative age distribution at one point in time (t+y) with the relative 

age distribution at the preceding point in time (t) and measures the percentage that one 

age distribution would have to be re-allocated to match the other.  S ranges from 0 to one 

(1); a score of zero is means that there is no allocation error, and a score of one (1) means 

that the maximum allocation error exists. A score of one (1) can be interpreted in several 

ways, but a common interpretation is that half of the numbers by age in one population 

would have to be re-allocated in order to match the distribution of the numbers by age in 

the comparison population. Since we are dealing with the same population at viewed at 

two successive points in time, this leads to viewing a score of one (1) as an indication that 

one half of the numbers by age at time t would have to be reallocated to match the 

numbers by age of the same population at the preceding point in time.
3
 

S exploits the idea that when a population is stable, the sum of the differences 

between the relative size of corresponding age groups at time t+y and time t is zero. Thus, 

at a point time when the sum of the differences across all of the corresponding age groups 

is zero at that point in time and the preceding point in time (or very nearly so), the 

population has reached stability.  The advantage of using the Index of Dissimilarity as S 

is that it provides S with a bounded measure (between 0 and 1) and has a clear 

interpretation. This index could, of course, be used in conjunction with the traditional 
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approach, but it does not appear in the literature in regard to measuring population 

stability. With S, one has a potential tool for examining the length of time to stability for 

given population.    

The examination of the CCR approach to the idea of a stable population starts by 

using the case of Alaska.  The CCRs (from the 2000-2010 period) are held constant from 

the launch year (2010) to a year where S = 0 (relative to the preceding year in the 

projection cycle). This occurs at the year 2470. Table 2 displays this by showing the 

information at for the 2000-2010 launch period and the information at the period where 

stability is reached, 2370-2380. S = .10573 at the launch year of 2010; by 2380, S = 

0.0000.   

                                            (Table 2 About Here) 

Figure 1 provides the change in S from 2010 to 2470. As it shows, the path to 

stability is monotonic but not linear. It initially declines rapidly to the point where S is 

approximately equal to .01, but the change in S slows substantially around 2120. From 

there to 2470, S moves incrementally to zero. 

                                    (Figure 1 About Here) 

Figures 2 and 3 show the age distribution of Alaska in 2010 and in 2470, when it reaches 

stability. 

                                   (Figures 2 and 3 About Here) 

As another example, consider the United States. As was the case with Alaska, the 

projection is launched with CCRs taken over the 2000-2010 period that are held constant 

from the launch year to a year where S = 0 (relative to the preceding year in the 
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projection cycle). Stability occurs at the year 2380. Table 3 displays this by showing the 

information at the launch period, 2000-2010, and the information at the period where 

stability is reached, 2330-2340. S = .0565 at the launch year of 2010; by 2380, S = 

0.0000  

(Table 3 About Here) 

Figure 4 provides the change in S from 2010 to 2340 for the United States. Unlike 

Alaska, the path to stability is neither monotonic nor linear: It initially increases, 

“bounces around” a bit, and then decreases substantially before its decrease slows 

considerably, which starts around 2160. From 2160 to 2340, S moves incrementally to 

zero. Figure 5 shows the graph of ln(S) relative to time 

                                 (Figures 4 and 5 About Here) 

Figures 6 and 7 show the age distribution of the U.S. in 2000 and in 2340, when it 

reaches stability 

                                 (Figures 6 and 7 About Here) 

The final case study population is Whitman County, Washington. This population is 

of interest not only because it is growing but because it is heavily impacted by a “special 

population, namely students enrolled at Washington State University. In 2010, the total 

population of Whitman County was about 45,000. Students at Washington State 

University make up about half of this number.  This can be seen in Figure 10. 

As was the case with Alaska and the United States,  the projection is launched 

with CCRs taken over the 2000-2010 period, which are held constant from the launch 

year to a year where S = 0 (relative to the preceding year in the projection cycle). This 

occurs at the year 2290. Table 4 displays this by showing the information at the launch 
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period, 2000-2010, and the information at the period where stability is reached, 2330-

2340. S = 0.0798 at the launch year of 2010; by 2290, S = 0.0000   

                                     (Table 4 About Here) 

Figure 8 provides the change in S from 2010 to 2290 for Whitman County. As 

was the case for the United States, the path to stability is neither monotonic nor linear: It 

initially increases, “bounces around” a bit, and then decreases substantially before its 

decrease slows considerably, which starts around 2160. From 2160 to 2290, S moves 

incrementally to zero. Figure 9 shows the graph of ln(S) relative to time 

                                 (Figures 8 and 9 About Here) 

Figures 10 and 11 show the age distribution of Whitman County in 2000 and in 2290, 

when it reaches stability 

                                 (Figures 10 and 11 About Here) 

To examine the question of weak ergodicity, the 2000-2010 CCRs for the USA are 

applied to Whitman County, which reaches stability in 2420 using these CCRs. Table 5 

contains the data while Figure 12 shows the age distribution of Whitman County in 2240 

when it reaches stability using the US CCRs.  In comparing the age distribution found in 

Figure 12 to that of the US (at stability) in 2340, it is clear that they are very similar, if 

not identical. To test this more rigorously, the differences were calculated and found to be 

essentially zero at each age group. In addition, the intrinsic growth rate of .00475 

matches that of the US when it reaches stability. This confirms the idea that using CCRs 

to generate stable populations is consistent with ergodicity theory, at least in its weak 

form (Cohen 1979). The test results are in Table 6. 

                                (Figure 12 About Here)                                    
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                                 (Table 6 About Here) 

IV. Time to Stability 

 The analytic approach to a stable population does not provide a means to estimate 

the time required before a given population achieves stability. In looking at a scatter plot 

of the initial Stability Score and the time to Stability, it is apparent that a positive linear 

relationship exists (see Figure 13). Thus, it was natural to look toward regression analysis 

as a way to estimate time to Stability from the initial value of S. Thus, a simple bivariate 

regression model was constructed using a sample of 18 U.S. States used in a different 

study (Swanson and Hough 2012).  These states are shown in Exhibit 1. 

                                        (Exhibit 1 About Here) 

                                        (Figure 13 About Here) 

The regression model was constructed using one independent variable, the initial 

value of S. The Dependent variable is time (in years) to “stability.” Of course, there is 

more information available for a population at its time of launch (e.g., proportion of the 

population under 20 years of age, the initial rate of population change) that could be 

examined as potential independent variables in a multiple regression model. However, it 

is seems obvious that since the larger an S score, the farther a population is from 

stability, the initial S score should serve as the starting point in a regression model. That 

is, the hypothesis is that there is a positive relationship between initial S score and time 

to stability. 

 Population stability is measured “approximately” by selecting the time to stability 

defined as when S =0.01. That is, when only one percent of age distribution the 

population at the preceding year needs to be re-allocated to match the age distribution of 
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the population at the subsequent year.  S =0.01 was selected because an examination of 

the scatter plots for Alaska, The United States, and Whitman County revealed that a long 

“tail” exists in going from S =0.01 to S =0.00 (see, e.g. Figures 1, 5, or 9). Because U.S. 

states are used, there are ten years between these two points in time.  Figure 13 shows the 

relationship between the Initial S score and the time to S =0.01. 

 The NCSS statistical system was used to build the regression model, an overview of 

which is given below.  The input data used to build the regression model are found in 

Table 7. 

 (YEARS TO S =0.01) = 31.42 + (861.53*INITITAL_S_SCORE)                

                                (p= .047)   (p = .0011) 

r
2
 = .495 

Both the intercept and the partial regression coefficient for the initial S score is 

statistically significant ( = 0.05) and that the coefficient of determination suggests that 

the model explains 50 percent of the variation in years to approximate stability (S =0.01).   

        (Table 7 About Here) 

To get an idea of the accuracy of the model shown in the regression equation, it was 

used to estimate time to S =0.01 for the case study populations, Alaska, the United 

States, and Whitman County, Washington. Table 8 provides the results of this 

examination. 

                                      (Table 8 About Here) 

The estimates for the US and Whitman County are reasonably accurate, with error of 

-8 and -19 years respectively and the estimate for Alaska is very accurate in that the time 
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to approximate stability at S =0.01 is estimated as 123 years and the actual number of 

years to S =0.01 is 120.  

 

VI. Estimating Intrinsic r from the initial rate of population increase 

A range of methods exist for estimating intrinsic r (Barclay 1958: 216-222, Coale 

1957, 1972, Dublin 1925, Keyfitz and Flieger 1968; Lotka 1907, McCann 1973, Pressat 

2009: 318-328, Preston et al. (2001:138-170, United Nations 1968), but we not aware of 

the direct use of regression analysis using the initial rate of increase in a given population 

for this purpose.
5
 We note that analytic methods are preferable when relationships are 

understood. However, as Barclay (1958: 216) observes the determination of a non-

stationary population is a complex task and the literature does not reveal a direct 

relationship between the initial rate of increase in a given population to its intrinsic rate 

of increase (Barclay 1958, Coale 1957, 1972, Dublin 1925, Keyfitz and Flieger 1968, 

Lotka 1907, McCann 1973, Pressat 2009, Preston et a. 2001)   As an initial exploration of 

this relationship, and given the positive results yielded from employing regression to 

estimate the time to stability for a given population, we, therefore, employ regression 

analysis. 

As a first step, we use data on 67 countries found in Keyfitz and Flieger (1968) in a 

“proof of concept” test. These 67 cases represent are the most recent entries  for national 

and ethnic populations in Keyfitz and Flieger (1968); they also were used by McCann 

(1973) in constructing  a quadratic regression model to estimate mean generation length, 

which he then employed to estimate intrinsic r in conjunction with the natural logarithm 

of the net reproduction rate. The independent variable is the natural rate of increase, 
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which Keyfitz and Flieger (1968) found by subtracting the crude death rate from the 

crude death rate for these 67 populations. The dependent variable is the intrinsic rate of 

increase found by Keyfitz and Flieger for these same 67 populations. As an example, the 

initial rate of increase used for Costa Rica in 1963 is 41.31 (.4131) while its intrinsic rate 

of increase is 41.5200 (.415200) (Keyfitz and Flieger 1968: 96). The complete set of data 

is found in Table 9 while Figure 14 provides a scatter plot between the initial rate of 

increase (r) and the intrinsic rate of increase (r’). 

(Table 9 About Here) 

(Figure 14 About Here) 

It is clear from Figure 14 that a positive linear relationship exists between r and r’. 

The regression model constructed from the data in Table 9 using the NCSS Statistical 

System is: 

 r’ = -1.1719 + 1.0532*r             

                                (p= .0222)   (p <.0001) 

r
2
 = .8992 

 

The results strongly support the idea that r’ can be estimated from r using linear 

regression.  The coefficient of determination is very high and the slope coefficient is 

statistically significant. Given this, we now turn our attention to the same 18 county data 

set used to generate the regression model used to estimate time to stability from the score 

of the initial stability index (S). The counties are named in Exhibit 1 while the values of r 

and r’ for these 18 counties are provided in Table 10. 

    (Table 10 About Here) 



 20 

The scatter plot between r (x axis) and r’ (y axis) for these 18 counties found in 

Figure 15 shows a positive linear relationship between these two variables and is 

consistent with what was observed in Figure 14.  

    (Figure 15 About Here) 

The regression model constructed from the data in Table 10 using the NCSS Statistical 

System is: 

 r’ = -0.0036 + 0.9561*r             

                                (p= .0004)   (p < .0001) 

r
2
 = .9302 

As was the case with the “proof of concept” test using the data from Keyfitz and 

Flieger (1968), the results for the model constructed using the data for the 18 show that 

that r’ can be estimated from r using linear regression.  The coefficient of determination 

is very high and both the intercept terms and the slope coefficient are statistically 

significant. To get an idea of the accuracy of the model shown in the regression equation, 

it was used to estimate r’ from r for the three case study populations, Alaska, the United 

States, and Whitman County, Washington. Table 11 provides the results of this 

examination. 

                                      (Table 11 About Here) 

The estimate for Whitman County is quite accurate with an error of -.0038 (-5.02 

percent) while the estimates for Alaska and the United States are reasonably accurate, 

with errors of 0.0004 (4.94 percent) and 0.0005 (10.8 percent), respectively. 

VII.  Conclusion 

Cohort Change Ratios (CCRs) appear to us to be useful as a tool for examining the 

idea of a stable population, given the informal and non-rigorous examination found in 



 21 

this paper.   Benefits of the CCR approach include the ability to easily deal with both 

sexes and all of the components of change, including migration. A drawback of the CCR 

approach is that one cannot easily assess the effect of each component of change since 

they are all effectively rolled into CCRs.  

While we have not provided mathematical proofs, we believe that the numerical 

results support the idea that applying cohort change ratios to a given age distribution will 

result in a stable population and that this result is consistent with the weak ergodicity 

theorem. In addition, there are three by-products of this paper that we believe are useful: 

(1) the Index of Stability (S); (2) the use of S to estimate time to stability; and (3) 

estimating intrinsic r (r’) directly from a given population’s initial rate of increase (r). As 

noted earlier, we were unable to find anything similar to S in the stable population 

literature and, in particular, it use to define stability.
6 

 Calling upon the Index of 

Dissimilarity for this purpose appears to be a natural use for it and the data suggest that 

when S=0, a population has reached stability.  The use of S in estimating time to stability 

via a regression model also appears to us to be useful. The third by-product is the use of 

regression to estimate intrinsic r (r’) from the initial rate of increase for a given 

population (r). Again, the results suggest that intrinsic r can be estimated using regression 

and as was the case for S and its use in estimating time to stability, we are not able to find 

anything in the stable population literature that this had been done before.  

In applying the US CCRs to Whitman County, when this population reached stability, 

its age distribution was the same as that found for the US when the latter reached 

stability. That is, as suggested by formal stable population theory, this case study shows 

that when a constant set of rates is applied to a given population, the initial age 
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distribution is “forgotten” as the population becomes stable. Again, we point out that this 

is consistent with the weak ergodicity theorem. 

The CCR approach appears to be sufficiently useful to warrant further investigation. 

In this studies, it appears it would be useful to graph The Stability Index over the time it 

takes a given population to reach stability.  The graphs presented here for the three case 

studies suggest a non-monotonic and non-linear path and similar results (not shown here) 

were found for the sample of 18 states.  The work with the 18 states suggests that 

regression models provide a way to estimate both time to stability and intrinsic r.  These 

findings suggest that there are relationships within the CCRs and the initial set of 

conditions in the launch population and the population preceding it (from which the 

CCRs are constructed along with initial S and the initial rate of increase, r) that hold the 

key to developing analytic expressions for the relationships between these initial 

conditions, on the one hand, and the time to stability and r’, on the other.
7
  

It may be the case that both the regression model used to estimate time to stability and 

the model used to estimate r’ are accurate only within “families” of population dynamics. 

Here, the types of dynamics come to mind that are analogous to the Regional Model Life 

Tables and Stable Populations developed by Coale and Demeny (1996). If this is the case, 

then the different families would need to be identified and regression models specific to 

each family would need to be constructed using data from the populations with each 

family. 

Another area for research is the use of CCRs in conjunction with ideas promulgated 

by Keyfitz (1974) for examining stable processes across two (or more) interacting 

populations. Because it can deal with both sexes and migration quite handily, the CCR 
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approach may be more tractable in regard to examining the path to stability in such 

populations. 

In conclusion, we know that regression models are generally not as satisfying as 

analytical expressions in regard to describing relationships. It would be much more 

elegant to express the time to stability in terms of an analytic expression that incorporates 

the initial stability index (and probably other information about initial conditions) than it 

is to express the relationship in the form of a regression model.
8
 The same can be said 

about the relationship between the initial rate of increase in a given population and its 

intrinsic rate of increase. However, we also note that regression analysis has already been 

successfully employed in conjunction with stable population analysis, to include the 

Bourgeois-Pichat method for estimating intrinsic r from the proportional age distribution 

of a given population (Keyfitz and Flieger 168:49, United Nations 1968), McCann’s 

(1973) method for estimating mean generation length from a trial value of the intrinsic 

rate of increase, and the generation of model life table families and from them, stable 

populations (Coale and Demeny 1968).   

Endnotes 

 

1. While not an exception to this statement, Sprague (2012) employs a Leslie Matrix in 

conjunction with cohort change ratios, which could be used to move an initial 

population to stability. In unpublished work, Swanson (2013) also has developed a 

Leslie Matrix approach that implements the cohort change ratio approach using a 

macro written in Visual Basic Applications for excel. The program and excel file is 

for 16 5-year age groups (0-4, 5-9,…,75+) and a five-year projection cycle. The file 

includes documentation and instructions for running the macro. It is available on 

request from David Swanson (dswanson@ucr.edu). Part of this paper is taken form 

Swanson and Tedrow (2013). 

2.   We thought it useful to show that the moving a population through time using cohort 

change ratios is algebraically equivalent to the fundamental demographic equation for 

two reasons. First, as noted by Land (1986) any quantitative approach to forecasting 

is constrained to satisfy various mathematical identities, and a demographic approach 

mailto:dswanson@ucr.edu
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should ideally satisfy demographic accounting identities, which is summarized in the 

fundamental demographic equation. The second reason is based on the argument by 

Vaupel and Yaushim (1985) that a demographic forecasting method needs to be 

consistent with the fundamental demographic equation in order to minimize the 

potential errors associated with hidden heterogeneity.  

3.   Often, the Index of Dissimilarity is expressed as a percentage, whereby the formula 

shown in equation [16] is multiplied by 100.  

4.  We note that according to stable population theory, once stability is achieved, it is 

maintained, such that the relative size of the age groups of the population in question 

remain constant throughout time thereafter given that the components of population 

change that led to stability also remain constant. We assume that this is the case in 

that once S reaches zero, it will remain at zero given that the CCRs that led to S=0 

also remain constant. 

5. While it appears that regression analysis has not been used to estimate intrinsic r from 

an initial r, Bourgeois-Pichat employed it to estimate intrinsic r from the proportional 

age distribution of a given population (see Keyfitz and Flieger 1968: 40). 

6. Keyfitz and Flieger (1968: 23 and 24-41) show a “dissimilarity” score between a 

current population age distribution and the age distribution for the corresponding 

stable population. The index is the sum of positive differences between the two 

distributions. This index is only one simple step from the Index of Dis-similarity. 

However, even so it is neither employed by Keyfitz and Flieger to define a stable 

population nor used to estimate time to stability. 

7. As one example of the “initial conditions” information available at launch, the Child 

Adult Ratio used to project children age 0-4 and 5-9 in the CCR approach is very 

similar to the “Replacement Index,” described by Barclay (1958: 215-216) as an 

approximation of the net reproduction rate. 

8. In regard to the usefulness of empirical findings, we note that in discussing the 

exploration of Kim and Sykes (1976) in regard to stable population concepts, Cohen 

(1979: 286) observed that their numerical experiments uncovered empirical 

regularities that invite theoretical explanation.  
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Table 1. A Hamilton-Perry Population Projection for Alaska: Base Year Data (2000-2010), Launch 

Year(2010) and Target Year 2020) 
 

2000 

POPULATION

2000 

PROPORTION 

BY AGE

2010 

POPULATION

2010 

PROPORTION 

BY AGE

 2000-2010      

CCR

ABS 

Difference

PROJECTED 

2020

Total 

Population: 

0 to 4 years
47,591 0.0759 53,996 0.0760 0.34274 0.0001 58,802

Total 

Population: 

5 to 9 years
53,771 0.0858 50,887 0.0716 0.34162 0.0141 62,124

Total 

Population: 

10 to 14 

years 56,661 0.0904 50,816 0.0715 1.06776 0.0188 57,655

Total 

Population: 

15 to 19 

years 50,094 0.0799 52,141 0.0734 0.96969 0.0065 49,344

Total 

Population: 

20 to 24 

years 39,892 0.0636 54,419 0.0766 0.96043 0.0130 48,805

Total 

Population: 

25 to 29 

years 42,987 0.0686 55,419 0.0780 1.10630 0.0095 57,684

Total 

Population: 

30 to 34 

years 46,486 0.0741 47,706 0.0672 1.19588 0.0070 65,079

Total 

Population: 

35 to 39 

years 55,723 0.0889 45,833 0.0645 1.06621 0.0243 59,088

Total 

Population: 

40 to 44 

years 58,326 0.0930 47,141 0.0664 1.01409 0.0267 48,378

Total 

Population: 

45 to 49 

years 53,515 0.0854 54,726 0.0771 0.98211 0.0083 45,013

Total 

Population: 

50 to 54 

years 41,437 0.0661 56,300 0.0793 0.96526 0.0132 45,504

Total 

Population: 

55 to 59 

years 27,423 0.0437 49,971 0.0704 0.93378 0.0266 51,102

Total 

Population: 

60 to 64 

years 17,327 0.0276 35,938 0.0506 0.86729 0.0230 48,829

Total 

Population: 

65 to 69 

years 12,626 0.0201 22,202 0.0313 0.80961 0.0111 40,457

Total 

Population: 

70 to 74 

years 9,881 0.0158 13,148 0.0185 0.75882 0.0028 27,270

Total 

Population: 

75 to 79 

years 6,863 0.0109 8,892 0.0125 0.70426 0.0016 15,636

Total 

Population: 

80 to 84 

years 3,695 0.0059 5,985 0.0084 0.60571 0.0025 7,964

Total 

Population: 

85 years 

and over 2,634 0.0042 4,711 0.0066 0.35711 0.0024 6,995

Total 

Population 626,932 1.0000 710,231 1.0000   795,728  
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Table 2. The Population of Alaska at start (2000-10) and at achieving Stability (2460-70) 

2000 

POPULATION

2000 

PROPORTION 

BY AGE

2010 

POPULATION

2010 

PROPORTION 

BY AGE

 2000-2010      

CCR

ABS 

Difference

PROJECTED 

2460

2460 

PROPORTION 

BY AGE

PROJECTED 

2470

2470 

PROPORTION 

BY AGE

ABS 

Difference

Total 

Population: 

0 to 4 years 47,591 0.0759 53,996 0.0760 0.34274 0.0001 731,574 0.0695 775,255 0.0695 0.0000

Total 

Population: 

0 to 4 years

Total 

Population: 

5 to 9 years 53,771 0.0858 50,887 0.0716 0.34162 0.0141 745,864 0.0708 790,395 0.0708 0.0000

Total 

Population: 

5 to 9 years

Total 

Population: 

10 to 14 

years 56,661 0.0904 50,816 0.0715 1.06776 0.0188 737,139 0.0700 781,149 0.0700 0.0000

Total 

Population: 

10 to 14 

years

Total 

Population: 

15 to 19 

years 50,094 0.0799 52,141 0.0734 0.96969 0.0065 682,501 0.0648 723,254 0.0648 0.0000

Total 

Population: 

15 to 19 

years

Total 

Population: 

20 to 24 

years 39,892 0.0636 54,419 0.0766 0.96043 0.0130 668,076 0.0635 707,971 0.0635 0.0000

Total 

Population: 

20 to 24 

years

Total 

Population: 

25 to 29 

years 42,987 0.0686 55,419 0.0780 1.10630 0.0095 712,506 0.0677 755,051 0.0677 0.0000

Total 

Population: 

25 to 29 

years

Total 

Population: 

30 to 34 

years 46,486 0.0741 47,706 0.0672 1.19588 0.0070 753,928 0.0716 798,937 0.0716 0.0000

Total 

Population: 

30 to 34 

years

Total 

Population: 

35 to 39 

years 55,723 0.0889 45,833 0.0645 1.06621 0.0243 716,882 0.0681 759,679 0.0681 0.0000

Total 

Population: 

35 to 39 

years

Total 

Population: 

40 to 44 

years 58,326 0.0930 47,141 0.0664 1.01409 0.0267 721,471 0.0685 764,552 0.0685 0.0000

Total 

Population: 

40 to 44 

years

Total 

Population: 

45 to 49 

years 53,515 0.0854 54,726 0.0771 0.98211 0.0083 664,376 0.0631 704,056 0.0631 0.0000

Total 

Population: 

45 to 49 

years

Total 

Population: 

50 to 54 

years 41,437 0.0661 56,300 0.0793 0.96526 0.0132 657,167 0.0624 696,410 0.0624 0.0000

Total 

Population: 

50 to 54 

years

Total 

Population: 

55 to 59 

years 27,423 0.0437 49,971 0.0704 0.93378 0.0266 585,431 0.0556 620,379 0.0556 0.0000

Total 

Population: 

55 to 59 

years

Total 

Population: 

60 to 64 

years 17,327 0.0276 35,938 0.0506 0.86729 0.0230 537,852 0.0511 569,956 0.0511 0.0000

Total 

Population: 

60 to 64 

years

Total 

Population: 

65 to 69 

years 12,626 0.0201 22,202 0.0313 0.80961 0.0111 447,266 0.0425 473,972 0.0425 0.0000

Total 

Population: 

65 to 69 

years

Total 

Population: 

70 to 74 

years 9,881 0.0158 13,148 0.0185 0.75882 0.0028 385,125 0.0366 408,131 0.0366 0.0000

Total 

Population: 

70 to 74 

years

Total 

Population: 

75 to 79 

years 6,863 0.0109 8,892 0.0125 0.70426 0.0016 297,239 0.0282 314,992 0.0282 0.0000

Total 

Population: 

75 to 79 

years

Total 

Population: 

80 to 84 

years 3,695 0.0059 5,985 0.0084 0.60571 0.0025 220,134 0.0209 233,273 0.0209 0.0000

Total 

Population: 

80 to 84 

years

Total 

Population: 

85 years and 

over 2,634 0.0042 4,711 0.0066 0.35711 0.0024 262,969 0.0250 278,668 0.0250 0.0000

Total 

Population: 

85 years 

and over

Total 

Poulation 626,932 1.0000 710,231 1.0000  0.2115 10,527,502 1.0000 11,156,080 1.0000 0.0000
Total 

Population  
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                          Table 3. The Population of the United States at start (2000-10)  

                                             and at achieving Stability (2330-40) 

2000 

POPULATION

2000 

PROPORTION 

BY AGE

2010 

POPULATION

2010 

PROPORTION 

BY AGE

 2000-

2010      

CCR ABS Difference

PROJECTED 

2020

PROJECTED 

2330

2330 

PROPORTION 

BY AGE

PROJECTED 

2340

2340 

PROPORTION 

BY AGE

ABS 

Difference

Total 

Population: 

0 to 4 years 19,175,798 0.0681 20,201,362 0.0654 0.32245 0.0027 21,754,486 100,481,615 0.0627 105,625,175 0.0627 0.0000

Total 

Population: 

0 to 4 years

Total 

Population: 

5 to 9 years 20,549,505 0.0730 20,348,657 0.0659 0.33226 0.0071 22,492,130 103,926,932 0.0648 109,244,576 0.0648 0.0000

Total 

Population: 

5 to 9 years

Total 

Population: 

10 to 14 

years 20,528,072 0.0729 20,677,194 0.0670 1.07830 0.0060 21,783,056 103,072,841 0.0643 108,348,964 0.0643 0.0000

Total 

Population: 

10 to 14 

years

Total 

Population: 

15 to 19 

years 20,219,890 0.0718 22,040,343 0.0714 1.07255 0.0005 21,824,924 106,034,347 0.0662 111,466,686 0.0662 0.0000

Total 

Population: 

15 to 19 

years

Total 

Population: 

20 to 24 

years 18,964,001 0.0674 21,585,999 0.0699 1.05154 0.0025 21,742,806 103,102,009 0.0643 108,384,764 0.0643 0.0000

Total 

Population: 

20 to 24 

years

Total 

Population: 

25 to 29 

years 19,381,336 0.0689 21,101,849 0.0683 1.04362 0.0005 23,001,707 105,270,843 0.0657 110,659,394 0.0657 0.0000

Total 

Population: 

25 to 29 

years

Total 

Population: 

30 to 34 

years 20,510,388 0.0729 19,962,099 0.0647 1.05263 0.0082 22,722,096 103,248,109 0.0644 108,528,390 0.0644 0.0000

Total 

Population: 

30 to 34 

years

Total 

Population: 

35 to 39 

years 22,706,664 0.0807 20,179,642 0.0654 1.04119 0.0153 21,971,022 104,271,146 0.0651 109,606,888 0.0651 0.0000

Total 

Population: 

35 to 39 

years

Total 

Population: 

40 to 44 

years 22,441,863 0.0797 20,890,964 0.0677 1.01856 0.0121 20,332,501 100,036,852 0.0624 105,163,906 0.0624 0.0000

Total 

Population: 

40 to 44 

years

Total 

Population: 

45 to 49 

years 20,092,404 0.0714 22,708,591 0.0736 1.00008 0.0022 20,181,355 99,194,021 0.0619 104,279,995 0.0619 0.0000

Total 

Population: 

45 to 49 

years

Total 

Population: 

50 to 54 

years 17,585,548 0.0625 22,298,125 0.0722 0.99360 0.0097 20,757,159 94,555,892 0.0590 99,396,126 0.0590 0.0000

Total 

Population: 

50 to 54 

years

Total 

Population: 

55 to 59 

years 13,469,237 0.0479 19,664,805 0.0637 0.97872 0.0158 22,225,315 92,363,286 0.0576 97,083,011 0.0576 0.0000

Total 

Population: 

55 to 59 

years

Total 

Population: 

60 to 64 

years 10,805,447 0.0384 16,817,924 0.0545 0.95635 0.0161 21,324,793 86,029,156 0.0537 90,428,448 0.0537 0.0000

Total 

Population: 

60 to 64 

years

Total 

Population: 

65 to 69 

years 9,533,545 0.0339 12,435,263 0.0403 0.92323 0.0064 18,155,225 81,113,547 0.0506 85,272,963 0.0506 0.0000

Total 

Population: 

65 to 69 

years

Total 

Population: 

70 to 74 

years 8,857,441 0.0315 9,278,166 0.0301 0.85866 0.0014 14,440,818 70,262,346 0.0438 73,869,483 0.0438 0.0000

Total 

Population: 

70 to 74 

years

Total 

Population: 

75 to 79 

years 7,415,813 0.0264 7,317,795 0.0237 0.76758 0.0026 9,545,107 59,228,785 0.0370 62,261,447 0.0370 0.0000

Total 

Population: 

75 to 79 

years

Total 

Population: 

80 to 84 

years 4,945,367 0.0176 5,743,327 0.0186 0.64842 0.0010 6,016,133 43,347,511 0.0270 45,559,392 0.0270 0.0000

Total 

Population: 

80 to 84 

years

Total 

Population: 

85 years 

and over 4,239,587 0.0151 5,493,433 0.0178 0.33091 0.0027 6,139,970 47,125,500 0.0294 49,538,482 0.0294 0.0000

Total 

Population: 

85 years 

and over

Total 

Population 281,421,906 1.0000 308,745,538 1.0000 1.09709 0.1130 336,410,602 1,602,664,738 1.0000 1,684,718,091 1.0000 0.0000
Total 

Population  
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      Table 4.  The Population of Whitman County, Washington at start (2000-10)  

                                             and at achieving Stability (2280-90) 
2000 

POPULATION

2000 

PROPORTION 

BY AGE

2010 

POPULATION

2010 

PROPORTION 

BY AGE

 2000-

2010      

CCR

ABS 

Difference PROJECTED 2020 PROJECTED 2280

2280 PROPORTION 

BY AGE PROJECTED 2290

2290 

PROPORTION 

BY AGE

ABS 

Difference

Total 

Population: 

0 to 4 years 940 0.0463 1,978 0.0442 0.11408 0.0021 3,910 534,917,525,831 0.0383 1,102,624,564,345 0.0383

0.0000

Total 

Population: 

0 to 4 years

Total 

Population: 

5 to 9 years
971 0.0478 1,810 0.0404 0.23352 0.0074 4,416 660,200,456,282 0.0472 1,360,864,336,756 0.0472

0.0000

Total 

Population: 

5 to 9 years

Total 

Population: 

10 to 14 

years 1,012 0.0498 1,789 0.0400 1.90319 0.0099 3,765 493,892,894,413 0.0353 1,018,050,482,672 0.0353

0.0000

Total 

Population: 

10 to 14 

years

Total 

Population: 

15 to 19 

years 2,696 0.1327 6,072 0.1356 6.25335 0.0029 11,319 2,002,801,978,465 0.1433 4,128,462,585,527 0.1433

0.0000

Total 

Population: 

15 to 19 

years

Total 

Population: 

20 to 24 

years 4,431 0.2181 11,394 0.2545 11.25889 0.0364 20,142 2,697,632,303,153 0.1930 5,560,687,390,253 0.1930

0.0000

Total 

Population: 

20 to 24 

years

Total 

Population: 

25 to 29 

years 1,368 0.0673 3,621 0.0809 1.34310 0.0135 8,155 1,304,993,320,308 0.0934 2,689,965,120,186 0.0934

0.0000

Total 

Population: 

25 to 29 

years

Total 

Population: 

30 to 34 

years 1,144 0.0563 2,324 0.0519 0.52449 0.0044 5,976 686,421,383,811 0.0491 1,414,871,918,873 0.0491

0.0000

Total 

Population: 

30 to 34 

years

Total 

Population: 

35 to 39 

years 1,106 0.0544 1,806 0.0403 1.32018 0.0141 4,780 835,775,205,629 0.0598 1,722,820,129,004 0.0598

0.0000

Total 

Population: 

35 to 39 

years

Total 

Population: 

40 to 44 

years 1,140 0.0561 1,864 0.0416 1.62937 0.0145 3,787 542,575,866,720 0.0388 1,118,434,842,153 0.0388

0.0000

Total 

Population: 

40 to 44 

years

Total 

Population: 

45 to 49 

years 1,013 0.0499 2,003 0.0447 1.81103 0.0051 3,271 734,285,642,588 0.0525 1,513,614,590,303 0.0525

0.0000

Total 

Population: 

45 to 49 

years

Total 

Population: 

50 to 54 

years 912 0.0449 2,212 0.0494 1.94035 0.0045 3,617 510,765,187,540 0.0365 1,052,787,558,934 0.0365

0.0000

Total 

Population: 

50 to 54 

years

Total 

Population: 

55 to 59 

years 766 0.0377 1,967 0.0439 1.94176 0.0062 3,889 691,710,962,376 0.0495 1,425,804,401,747 0.0495

0.0000

Total 

Population: 

55 to 59 

years

Total 

Population: 

60 to 64 

years 569 0.0280 1,679 0.0375 1.84101 0.0095 4,072 456,184,878,990 0.0326 940,323,190,658 0.0326

0.0000

Total 

Population: 

60 to 64 

years

Total 

Population: 

65 to 69 

years 472 0.0232 1,343 0.0300 1.75326 0.0068 3,449 588,282,752,011 0.0421 1,212,751,726,464 0.0421

0.0000

Total 

Population: 

65 to 69 

years

Total 

Population: 

70 to 74 

years 432 0.0213 885 0.0198 1.55536 0.0015 2,611 344,218,693,674 0.0246 709,531,841,663 0.0246

0.0000

Total 

Population: 

70 to 74 

years

Total 

Population: 

75 to 79 

years 454 0.0223 716 0.0160 1.51695 0.0064 2,037 432,964,000,554 0.0310 892,395,022,119 0.0310

0.0000

Total 

Population: 

75 to 79 

years

Total 

Population: 

80 to 84 

years 360 0.0177 584 0.0130 1.35185 0.0047 1,196 225,781,295,157 0.0162 465,332,678,485 0.0161

0.0000

Total 

Population: 

80 to 84 

years

Total 

Population: 

85 years 

and over

529

0.0260 729 0.0163 0.54281 0.0098 1,101 235,449,132,232 0.0168 485,381,785,533 0.0168

0.0000

Total 

Population: 

85 years 

and over

Total 

Population 20,315 1.0000 44,776 1.0000  0.1595 91,494 13,978,853,479,733 1.0000 28,814,704,165,673 1.0000
0.0000

Total 

Population  
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     Table 5.    The Population of Whitman County, Washington at start (2000-10)  

                        and at achieving Stability (2410-20) when the USA CCRs are applied 

 

2000 

POPULATION

2000 

PROPORTION BY 

AGE

2010 

POPULATION

2010 

PROPORTION 

BY AGE

 USA 2000-

2010      

CCR

ABS 

Difference

PROJECTED 

2410

2410 

PROPORTION 

BY AGE

PROJECTED 

2420

2420 

PROPORTION 

BY AGE

ABS 

Difference

Total 

Population: 

0 to 4 years 940 0.0463 1,978 0.0442 0.32245 0.0021 29,157 0.0627 30,652 0.0627 0.0000

Total 

Population: 

0 to 4 years

Total 

Population: 

5 to 9 years 971 0.0478 1,810 0.0404 0.33226 0.0074 30,159 0.0648 31,700 0.0648 0.0000

Total 

Population: 

5 to 9 years

Total 

Population: 

10 to 14 

years 1,012 0.0498 1,789 0.0400 1.07830 0.0099 29,914 0.0643 31,440 0.0643 0.0000

Total 

Population: 

10 to 14 

years

Total 

Population: 

15 to 19 

years 2,696 0.1327 6,072 0.1356 1.07255 0.0029 30,772 0.0662 32,347 0.0662 0.0000

Total 

Population: 

15 to 19 

years

Total 

Population: 

20 to 24 

years 4,431 0.2181 11,394 0.2545 1.05154 0.0364 29,917 0.0643 31,455 0.0643 0.0000

Total 

Population: 

20 to 24 

years

Total 

Population: 

25 to 29 

years 1,368 0.0673 3,621 0.0809 1.04362 0.0135 30,545 0.0657 32,114 0.0657 0.0000

Total 

Population: 

25 to 29 

years

Total 

Population: 

30 to 34 

years 1,144 0.0563 2,324 0.0519 1.05263 0.0044 29,962 0.0644 31,492 0.0644 0.0000

Total 

Population: 

30 to 34 

years

Total 

Population: 

35 to 39 

years 1,106 0.0544 1,806 0.0403 1.04119 0.0141 30,263 0.0651 31,803 0.0651 0.0000

Total 

Population: 

35 to 39 

years

Total 

Population: 

40 to 44 

years 1,140 0.0561 1,864 0.0416 1.01856 0.0145 29,033 0.0624 30,518 0.0624 0.0000

Total 

Population: 

40 to 44 

years

Total 

Population: 

45 to 49 

years 1,013 0.0499 2,003 0.0447 1.00008 0.0051 28,782 0.0619 30,266 0.0619 0.0000

Total 

Population: 

45 to 49 

years

Total 

Population: 

50 to 54 

years 912 0.0449 2,212 0.0494 0.99360 0.0045 27,433 0.0590 28,847 0.0590 0.0000

Total 

Population: 

50 to 54 

years

Total 

Population: 

55 to 59 

years 766 0.0377 1,967 0.0439 0.97872 0.0062 26,803 0.0576 28,169 0.0576 0.0000

Total 

Population: 

55 to 59 

years

Total 

Population: 

60 to 64 

years 569 0.0280 1,679 0.0375 0.95635 0.0095 24,972 0.0537 26,236 0.0537 0.0000

Total 

Population: 

60 to 64 

years

Total 

Population: 

65 to 69 

years 472 0.0232 1,343 0.0300 0.92323 0.0068 23,544 0.0506 24,745 0.0506 0.0000

Total 

Population: 

65 to 69 

years

Total 

Population: 

70 to 74 

years 432 0.0213 885 0.0198 0.85866 0.0015 20,386 0.0438 21,442 0.0439 0.0000

Total 

Population: 

70 to 74 

years

Total 

Population: 

75 to 79 

years 454 0.0223 716 0.0160 0.76758 0.0064 17,181 0.0369 18,072 0.0370 0.0000

Total 

Population: 

75 to 79 

years

Total 

Population: 

80 to 84 

years 360 0.0177 584 0.0130 0.64842 0.0047 12,578 0.0270 13,219 0.0270 0.0000

Total 

Population: 

80 to 84 

years

Total 

Population: 

85 years 

and over

529

0.0260 729 0.0163 0.33091 0.0098 13,679 0.0294 14,374 0.0294 0.0000

Total 

Population: 

85 years 

and over

 20,315 1.0000 44,776 1.0000  0.1595 465,079 1.0000 488,892 1.0000 0.0000
Total 

Population  
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Table 6. Difference in Proportional Population by Age for the US At Stability                                                    

                        and Whitman County at Stability using US CCRs 
WHITMAN 

COUNTY 2420 

PROPORTION 

BY AGE

USA 2340 

PROPORTION 

BY AGE DIFFERENCE

Total 

Population: 0 

to 4 years 0.0627 0.0627 0.0000

Total 

Population: 5 

to 9 years 0.0648 0.0648 0.0000

Total 

Population: 

10 to 14 

years 0.0643 0.0643 0.0000

Total 

Population: 

15 to 19 

years 0.0662 0.0662 0.0000

Total 

Population: 

20 to 24 

years 0.0643 0.0643 0.0000

Total 

Population: 

25 to 29 

years 0.0657 0.0657 0.0000

Total 

Population: 

30 to 34 

years 0.0644 0.0644 0.0000

Total 

Population: 

35 to 39 

years 0.0651 0.0651 0.0000

Total 

Population: 

40 to 44 

years 0.0624 0.0624 0.0000

Total 

Population: 

45 to 49 

years 0.0619 0.0619 0.0000

Total 

Population: 

50 to 54 

years 0.0590 0.0590 0.0000

Total 

Population: 

55 to 59 

years 0.0576 0.0576 0.0000

Total 

Population: 

60 to 64 

years 0.0537 0.0537 0.0000

Total 

Population: 

65 to 69 

years 0.0506 0.0506 0.0000

Total 

Population: 

70 to 74 

years 0.0439 0.0438 0.0000

Total 

Population: 

75 to 79 

years 0.0370 0.0370 0.0000

Total 

Population: 

80 to 84 

years 0.0270 0.0270 0.0000

Total 

Population: 

85 years and 

over 0.0294 0.0294 0.0000

SUM 1.0000 1.0000 0.0000  
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TABLE 7. INPUT DATA FOR THE REGRESSION MODEL

POPULATION

INITIAL STABILITY 

INDEX

YEARS TO 

STABILITY, S =0.01

PIMA CO, AZ 0.06099 70

JEFFERSON CO, 

AR 0.06563 70

TULARE CO, CA 0.03966 80

BROWARD CO, FL 0.08147 110

LAKE CO, IL 0.08442 110

BLACK HAWK CO, 

IA 0.06886 100

CALVERT CO, MD 0.11430 130

HAMPDEN CO, MA 0.08246 110

MADISON CO, MS 0.07240 60

DOUGLAS CO, NE 0.05269 70

BRONX CO, NY 0.06185 120

ROCKLAND CO, NY 0.05063 70

FRANKLIN CO, OH 0.05076 70

MULTNOMAH CO, 

OR 0.06130 100

SCHUYLKILL CO, 

PA 0.06444 70

SEVIER CO, TN 0.05636 70

YAKIMA CO, WA 0.04223 60  
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                         Table 8. Estimated and Actual Years to S =0.01 

 
 

Population Initial  S 

Actual Years to  
S = 0.01 

Estimated Years 

to  S  =0.01 

using the 
regression 

models 

Difference 
(estimate - 

actual) 
Percent 

Difference 

Alaska 0.10573 120 123 3 2.50% 

United States 0.0565 60 52 -8 -13.19% 

Whitman County, WA 0.07903 90 71 -19 -20.56%  
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OBSERVED RATE OF INTRINSIC

COUNTRY YEAR NATURAL INCREASE RATE

MAURITIUS 1965 26.8300 31.1491

REUNION 1961 32.3800 33.0756

SOUTH AFRICA COLORED POP 1960 31.1500 32.1806

SOUTH AFRICA WHITE POP 1960 16.1600 18.3173

TOGO 1961 25.5600 18.3170

BARBADOS 1965 18.2600 18.0947

CANADA (EXL NEWFOUNDLAND) 1965 13.5200 14.6668

ONTARIO (CANADA 1960-62 19.0200 18.7584

COSTA RICA 1963 41.3100 41.5200

DOMINICAN REPUBLIC 1960 27.3400 24.4959

EL SALVADOR 1950 33.9600 28.0790

GRENADA 1960 33.4200 39.1496

HOUNDURAS 1965 34.4400 34.0591

JAMAICA 1956 27.8200 27.8203

MARTINIQUE 1963 25.0300 28.2939

MEXICO 1962 33.7900 33.6501

PANAMA (EXL CANAL ZONE & TRIBES) 1962 34.2200 34.6460

PUERTO RICO 1965 23.5800 22.3987

ST KITTS-NEVIS & ANGUILLA 1960 29.1400 37.0359

SANTA LUCIA 1960 34.1200 35.1625

TRINIDAD & TOBAGO 1959-61 30.3000 33.0584

USA (WITH ADJUSTED BIRTHS) 1965 10.1800 12.6505

ARGENTINA 1961 14.1700 8.4115

BRITISH GUIANA (BELIZE) 1956 31.9500 36.0682

CHILE 1964 21.6000 21.0531

COLUMBIA 1964 27.9100 28.3471

FRENCH GUIANA 1961 17.3500 26.3188

PERU 1961 25.0000 23.4555

VENEZUELA 1963 36.23 36.6998

CEYLON 1962 26.99 26.3984

CHINA (TAIWAN) 1965 27.22 27.981

CYPRESS 1960 19.72 16.833

ISRAEL 1963 15.91 16.0788

JAPAN 1963 10.31 -2.769

SINGAPORE 1962 28.45 31.7108

THAILAND 1960 26.42 22.1485

ALBANIA 1955 29.36 29.3867

AUSTRIA 1965 4.91 8.5456

BELGIUM 1963 4.57 8.0839

BULGARIA 1965 7.17 -1.5469

CZECHOSLOVAKIA 1964 7.57 6.4485

DENMARK 1964 7.74 7.6104

FINLAND 1965 7.25 4.5477

FRANCE 1965 6.58 10.3859

GERMANY (EAST) 1964 3.87 6.0057

GERMANY (WEST, INC W. BERLIN) 1965 6.21 5.5359

GREECE 1965 9.85 1.2845

HUNGARY 1965 2.45 -7.0812

ICELAND 1962 19.04 23.2193

IRELAND 1960-62 9.6 19.1095

ITALY 1964 10.09 6.3874

LUXEMBOURG 1963 3.59 1.9932

MALTA 1965 8.23 4.7856

NETHERLANDS 1965 11.97 12.5215

NORWAY 1964 8.25 11.9853

POLAND 1962 11.88 7.3215

PORTUGAL 1965 12.47 9.7744

ROMANIA 1965 6.04 -4.2811

SPAIN 1963 12.42 9.1676

SWEDEN 1965 5.77 5.1733

SWITZERLAND 1964 10.27 7.7072

UNITED KINGDOM , ENGLAND & WALES 1963 5.98 10.8473

UNITED KINGDOM, SCOTLAND 1963 7.14 12.6657

YUGOSLAVIA 1961 13.71 6.8722

AUSTRALIA 1965 10.84 12.2941

FIJI ISLANDS 1964 31.79 30.838

NEW ZEALAND 1965 14.12 13.5453

TABLE 9. THE MOST RECENT ENTRIES FOR 67 COUNTRIES IN KEYFITZ & FLIEGER(1968)
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POPULATION INITIAL R INTRINSIC R

PIMA CO, AZ 0.01500 0.01002

JEFFERSON CO, AR -0.00847 -0.01490

TULARE CO, CA 0.01836 0.01744

BROWARD CO, FL 0.00742 0.00628

LAKE CO, IL 0.00878 0.00128

BLACK HAWK CO, IA 0.00238 0.00028

CALVERT CO, MD 0.01740 0.00994

HAMPDEN CO, MA 0.00158 -0.00201

MADISON CO, MS 0.02429 0.01708

DOUGLAS CO, NE 0.01093 0.00881

BRONX CO, NY 0.00386 0.00053

ROCKLAND CO, NY 0.00834 0.00832

FRANKLIN CO, OH 0.00847 0.00540

MULTNOMAH CO, OR 0.01073 0.00620

SCHUYLKILL CO, PA -0.00137 -0.00521

SEVIER CO, TN 0.02335 0.01810

YAKIMA CO, WA 0.00887 0.00631

TABLE 10. INITIAL RATE OF INCREASE AND INTRINSIC R
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        TABLE 11 ESTIMATED INTRINSIC R AND ACTUAL INTRINSIC R FOR THREE POPULATIONS

Population Initial r est r' actual r' Difference Percent Difference

ALASKA 0.0125 0.0083 0.0079 -0.0004 -4.94%

USA 0.0093 0.0053 0.0048 -0.0005 -10.80%

WHITMAN 

COUNTY 0.0790 0.0720 0.0758 0.0038 5.02%
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     Figure 1. Stability Index (S) over time (in Years) as the                                                                

                        Alaskan Population moves to Stability 
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               Figure 2. Age Distribution of Alaska in 2010 
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                Figure 3. Age Distribution of Alaska in 2470 
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              Figure 4. Stability Index (S) over time (in Years) as the                                                                

                        U.S. Population moves to Stability 
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              Figure 5. The Natural Logarithm of S over time (in Years) as the                                                                

                        U.S. Population moves to Stability 
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                    Figure 6. Age Distribution of the U.S. in 2000 

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000

 

 

 

 

 

 

 

 



 41 

 

 

             Figure 7. Age Distribution of the U.S. in 2340 
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  Figure 8. Stability Index (S) over time (in Years) as the                                                                

                        Whitman County Population moves to Stability 
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        Figure 9. The Natural Logarithm of S over time (in Years) as the                                                                

                        Whitman County Population moves to Stability 
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                            Figure 10. Age Distribution of Whitman County in 2000 
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                   Figure 11. Age Distribution of Whitman County in 2290 
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Figure 12. Age Distribution of Whitman County in 2420 when USA CCRs are applied 
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Figure 13. Relationship between Initial S and Years to Approximate Stability (S=0.01) 
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Figure 14. Relationship between initial r and intrinsic r, 67 populations 
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Figure 15. Relationship between initial r and intrinsic r, 18 US Counties 
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Exhibit 1. The 18 counties used in the Regression Analysis 

 

Pima County, AZ    Madison County, MS 

Jefferson County, AR   Douglas County, NE 

San Francisco County, CA  Bronx County, NY 

Tulare County, CA   Rockland County, NY 

Broward County, FL   Franklin County, OH 

Lake County, IL    Multnomah County, OR 

Black Hawk County, IA   Schuylkill County, PA 

Calvert County, MD   Sevier County, TN 

Hampden County, MA   Yakima County, WA 
 


